UNIT |
BOOLEAN ALGEBRA AND LOGIC GATES

Number Systems - Arithmetic Operations - Binary Codes- Boolean Algebra and Logic Gates - Theorems and

Properties of Boolean Algebra - Boolean Functions - Canonical and Standard Forms - Simplification of Boolean
Functions using Karnaugh Map - Logic Gates — NAND and NOR Implementations.

Introduction

Basically there are two types of signals in electronics,

i) Analog
i) Digital

Digital systems

Advantages:

The usual advantages of digital circuits when compared to analog circuits are:Digital systems
interface well with computers and are easy to control with software. New features can often be added
to a digital system without changing hardware.

Often this can be done outside of the factory by updating the product's software. So, the product's
design errors can be corrected after the product is in a customer's hands.

Information storage can be easier in digital systems than in analog ones. The noise-immunity of
digital systems permits data to be stored and retrieved without degradation.

Inan analog system, noise from aging and wear degrade the information stored.

Ina digital system, as long as the total noise is below a certain level, the information can be recovered
perfectly.

Disadvantages:

R/
A X4

X/
°

X/
°

X/
°e

In some cases, digital circuits use more energy than analog circuits to accomplish the same tasks, thus
producing more heat as well. In portable or battery-powered systems this can limit use of digital
systems.

Digital circuits are sometimes more expensive, especially in small quantities.The sensed world is
analog, and signals from this world are analog quantities.

Digital circuits are sometimes more expensive, especially in small quantities. The sensed world is
analog, and signals from this world are analog quantities.

For example, light, temperature, sound, electrical conductivity, electric and magnetic fields are

analog.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 1

REVIEW OFNUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are the decimal, binary,
octal, and hexadecimal systems. The decimal system is clearly the most familiar to us because it is tools

that we use every day.

Types of Number Systems are
¢ Decimal Number system
¢ Binary Number system
¢ Octal Number system

% Hexadecimal Number system

Table: Types of Number Systems

DECIMAL BINARY OCTAL HEXADECIMAL
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Table: Numbersystemandtheir Base value
Number Systems
System Base Digits
Binary 2 01
Octal 8 01234567
Decimal 10 0123456789
Hexadecimal 16 0123456789ABCDEF

B.ARUNKUMAR, Asst. Prof.,/ECE Page 2

Code Conversion:

%+ Convertingfromonecodeformtoanothercodeformiscalledcodeconversion, likeconvertingfrom binaryto
decimal orconverting from hexadecimal to decimal.

Binary-To-DecimalConversion:
Anybinarynumbercanbeconvertedtoitsdecimalequivalent simplybysummingtogether
theweights of the variouspositions in the binarynumber whichcontainal.

Binary Decimal
11011,

—o4193,01491,00 =16+8+0+2+1
Result 27,

Decimal to binary Conversion:

Division Remainder Binary
25/2 =12+remainder ofl 1 (LeastSignificantBit)
12/2 =6 +remainder of0 0
6/2 =3 +remainder of0 0
312 =1 +remainder ofl 1
Ya =0 +remainder ofl 1 (MostSignificantBit)
Result 2549 =11001,

Binary to octal:
Example: 100 111010,=(100)(111)(010),=4 7 24

Octal to Binary:

372 QOctgl
TN
3 7 2
4 4 4
011 111 010

1 11 1 1 0 1 O Binary

7 & B 4 3 Z] 0

Decimal to octal:

Division Result Binary
177/8 =22+remainder ofl 1 (LeastSignificantBit)
22/ 8 =2 +remainder of6 6
2/8 =0 +remainder of2 2 (Most Significant Bit)
Result 1774, =261,
Binary =010110001,

B.ARUNKUMAR, Asst. Prof.,/ECE Page 3

Octal to Decimal:

Example:
|
7 | 1 | > ‘ G ‘ 3
g* o @o° 8t @’ fecimal
| . §h= 3
6 x 8 18
- »2x 8 - 128
1 x8 = 512
7 x 8 = 28672
293613
Decimal to Hexadecimal:
Division Result Hexadecimal
378/16 =23+remainder of10 A(LeastSignificantBit)23
23/16 =1 +remainder of7 7
1/16 =0 +remainder ofl 1 (Most Significant Bit)
Result 37810 =17A
Binary =00010111 1010,

Binary-To-Hexadecimal:
Example: 1011 0010 1111,=(1011) (0010) (1111),=B2F ¢

Hexadecimal to binary:

E6 Hexidecimal

Octal-To-Hexadecimal / Hexadecimal-To-Octal Conversion:
%+ Convert Octal (Hexadecimal) to Binary first.
¢ Regroup the binary number by three bits per group starting from LSB if Octal is required.
“* Regroup the binary number by four bits per group starting from LSB if Hexadecimal is required.

Octal to Hexadecimal: (May 2014)
Octal Hexadecimal
=2650
= 010110101000 =0101 1010 1000(Binary)
Result =(5A8)16

B.ARUNKUMAR, Asst. Prof.,/ECE Page 4

Hexadecimal to octal:

Hexadecimal Octal
(5A8)16 =0101 1010 1000(Binary)
=010 110101000(Binary)
Result =2 6 5 0(Octal)

1’s and2’s complement:

s Complements are used in digital computers to simplify the subtraction operation and for logical
manipulation.

¢ Thereare TWOtypesofcomplementsforeachbase-rsystem: theradixcomplementand the diminished
radix complement.

«The first is referred to as there’s complement and the second as the (r-
1)'scomplement,whenthevalueofthebaserissubstitutedinthename. Thetwo typesarereferredtoasthe
2's complement and 1's complement for binary numbers and the 10’s complement and 9's
complement for decimal numbers.

Note:
" Thel’scomplementofabinarynumberisthenumberthatresultswhenwechangealll
’sto zeros and the zeros to ones.
" The2’s complement is the binary number that results whenweaddl to thel’s
complement.
» It is used to represent negativenumbers.

2’s comple ment=1’scomple ment+1
Example 1) :Find 1’s complement of (1101),

Sol: 1101 <— Number
0010 «— 1’scomplement

Example 2) :Find 2’s complement of (1001),

Sol: 1001 number
0110 <«— 1’scomplement
+ 1
0111

Diminished Radix Complement:
Givena number N in base r having n digits, the (r-1)’s complement of N, i.e., its diminished

radix complement, is defined as (r"- 1) - N.
The9's comple mentof546700 is 999999-546700= 453299.

The9's comple mentof012398 is 999999-012398= 987601.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 5

Radix Complement:

The r’s complement ofan n-digit number N in base r is definedas r"- N for

forN=0.

For examples:
ThelO’scomplementof 012398 is 987602
Thel0’scomp lementof246700 is 753300

Model 1:
Using10’scomple ment, subtract72532-3250.
M= 72532
10’scomplement o fN = +96750
Sum= 169282
Discard endcarry10° = -100000
Answer = 69282
Model 2:
Using10’scomple ment, subtract3250-72532.
M= 03250
10’>s complementofN = +27468
Sum= 30718

Model 3:

(Dec 2009)

Given the two binary numbers X=1010100andY= 1000011, performthesubtraction

(@)X-Y and (b) Y -Xbyusing2’scomple ments. [NOV —2019]

(@ X= 1010100
2'scomplementofy=+ 0111101
Sum= 10010001
Discard endcarry27 = -10000000
Answer:X-Y= 0010001

(b) Y= 1000011

2'scomplement of X=0101100
Sum= 1101111

There is no end carry. Therefore, the answer isY- X=-(2’s complementofl1101111) =

-0010001.

N#0 andasO

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 6

Model 4:

Given the two binary numbers X=1010100 and Y= 1000011, perform the subtraction (a) X-Y and
(b) Y-X by using 1°s complements. (Dec 2009)

(a)X-Y=1010100-1000011

X= 1010100
1’scomplementofY=+0111100
Sum= 10010000
End around carry=+1
Answer:X-Y= 0010001
(b)Y-X=1000011-1010100
Y= 1000011
1’scomplement of X=+0101011
Sum= 1101110

There is no end carry. Therefore ,the answer is Y- X=-(1s complementofl101110)=
-0010001.

*hhhhkhkhkhkhkkhkhhihhhkhkhkhkkhiirrhhhhhkhkhrrhhihkhkhhiiiiix

ARITHMETIC OPERATIONS
Binary Addition:

Rules of Binary Addition
e 0+0=0
0+1=1
1+0=1
e 1+1=0,and carryltothe next most significant bit

Example:

Add: 00011010+00001100=00100110

11
00 011010
+0 0 00 1 1 0 O
00 100110

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 7

mailto:End@around

Binary Subtraction:
Rules of Binary Subtraction

¢0-0=0

¢(0 -1 =1,and borrow 1fromthe nextmoresignificantbit

e1-0=1

e1-1=0

Example:

Sub: 00100101-00010001= 00010100

00 100101
-0 0 01 0001

00 01 01OCO00

Binary Multiplication:
RulesofBinaryMultiplication

. 0x0=0
. 0x1=0
° 1x0=0
. 1 x1 =1,andnocarryorborrowbits

Example:Multiply the following binary numbers:

(@) 0111 and 1101 (b) 1.011 and 10.01.
(a) 0111 x 1101
0 1 1 Multiplicand
x 1 1 0 1 Multiplier
0 1 1
0 0 0 0 Partial
0 1 1 1 Products
1 1 1
0 1 1 0 1 1 Final Product

() 1.011 x 10.01

1. 0 1 Multiplicand
x 1 0. 0 1 Multiplier
1 0 1 1
0 0 0 0 Partial
0 0 0 Products
1 1 1
1 1 0 0 0 1 1 Final Product

B.ARUNKUMAR, Asst. Prof.,/ECE

Binary Division:
Binarydivisionisthe repeatedprocess ofsubtraction,justasindecimaldivision.
Example: Divide the following

(@) 11001 + 101
10 1
10 111 1 0o o 1
10 1
o 0 1 0o 1
1 0 1
0 0 0
(b) 11110 = 1001
t L 0 1 0
10 0 111 1 1 1 0
10 0 1
0 1 1 0 0
0 0 1
1 0 0 0
0 0 1
1 1 0
1 0 0 1
1 0 1

*hhkhkkhkhkhkkhkhkhkkhhkkhhhkhkhhkhkhhhhhhiihkiihhkihhkihhihikkiiikiik

BINARYCODES
Explain the various codes used in digital systems with an example.(or)Explain in detail about Binary
codes with an example
> Indigital systems a variety of codes are used to serve different purposes, such as data entry, arithmetic

operation, error detection and correction, etc.
> Selection of a particular codedepends on the requirement.
> Binarycodesarecodeswhicharerepresentedinbinarysystemwithmodification from the original ones.
» Codes can be broadly classified into five groups.
(1) Weighted Binary Codes
(11) Non-weighted Codes
(iii) Error-detection Codes
(iv) Error-correcting Codes
(v) Alphanumeric Codes
Weighted Binary Codes
» Ifeach position of a number represents a specific weight then the coding scheme is called weighted
binary code.
BCD Code or 8421 Code:
» The full form of BCD is ‘Binary-Coded Decimal’. Since this is a coding scheme relating decimal and
binary numbers, four bits are required to code each decimal number.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 9

» A decimal number in BCD (8421) is the same as its equivalent binary number only when the number
is between 0 and 9. A BCD number greater than 10 looks different from its equivalent binary number,
even though both contain 1°s and 0’s. Moreover,the binary combinations 1010 through 1111 are not
used and have no meaning in BCD.

» Consider decimal 185 and its corresponding value in BCD and binary:

(185)10= (0001 1000 0101)scp = (10111001),

» Forexample, (35)10 is represented as 0011 0101 using BCD code, rather than (100011),
» Example: Give the BCD equivalent for the decimal number 589.
The decimal number is 5 8 9
BCD code is 0101 1000 1001
Hence, (589)10 =(010110001001)gcp
2421 Code:
» Another weighted code is 2421 code. The weights assigned to the four digits are 2, 4,2, and 1.
» The 2421 code is the same as that in BCD from 0 to 4. Howeer, it varies from5 to 9.
> Forexample, in this case the bit combination 0100 represents decimal 4; whereas the bit combination
1101 is interpreted as the decimal 7, as obtained from2 x1+1x4+0x2+1x1=7.
» This is also a self-complementary code.

BCD Addition:
Examples:
«» Consider the additionof 184 +576 =760 in BCD:

BCD] l
0001 100D 0100 154
+0101 0111 0110 +576
Binary sum 0111 10000 1010
Addb oL 0110
BCD sum 0111 o110 0000 Tal

¢+ Add the following BCD numbers: (a) 1001 and 0100, (b) 00011001 and 00010100

Solution

() I 0 0 1
-0 1 0 o
P10 1 — Invalid BCD number 4
_:w({__} O — Adde =}
S0 0 0 1T 0 Ti_ni > Valid BCD number ”! ":,
i A
(h) g 0 0 1 O 0 1
+0 0 0 1 O 1 0 0
O 0o t+ 0 I 10 1 — Right group is invalid 19
+0 immi 0 > Add o 14
0 O 1 1 0 0 1 1 > Valid BCID number - 7% .

B.ARUNKUMAR, Asst. Prof.,/ECE Page 10

Four Different Binary Codes for the Decimal Digits

Decimal BCD
Digit 8421 2421 Excess-3 84 -2 -1

0 0000 0000 0011 0000

| 0001 0001 0100 0111

2 0010 0010 0101 0110

3 0011 0011 0110 0101

- 0100 0100 0111 0100

5 0101 1011 1000 1011

] 0110 1100 1001 1010

7 0111 1101 1010 1001

8 1000 1110 1011 1000

9 1001 1111 1100 1111
1010 0101 0000 0001

Unused 1011 0110 0001 0010
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1100
nations 1110 1001 1110 1101
1111 1010 1111 1110

Non-weighted Codes
> It basically means that each position ofthe binary number is not assigned a fixed value.
> Excess-3 codes and Gray codes are such non-weighted codes.

Excess-3 code:

%+ Excess-3isanon- weightedcodeusedtoexpressdecimalnumbers. Thecodederivesitsnamefrom
thefactthateachbinarycodeisthecorresponding8421codeplus0011(3).

Example:10000f8421 (BCD)=1011in Excess-3

% Convert (367)y into its Excess-3 code.

Solution. The decimal number is 3 6 7
Add 3 to each bit +3 +3 +3
Sum 6 9 10

Converting the above sum into 4-bit binary equivalent, we have a
4-bit binary equivalent of 0110 1001 1010
Hence, the Excess-3 code for (367),, = 0110 1001 1010

B.ARUNKUMAR, Asst. Prof.,/ECE Page 11

Graycode:
s Thegraycodebelongstoaclassofcodescalledminimumchangecodes, inwhichonlyonebitin
thecodechangeswhenmovingfrom onecodetothenext.
% TheGraycodeisnon-weightedcode,asthe positionofbitdoesnotcontainanyweight.In
digitalGraycodehasgot a specialplace.

Decimal BinaryCode GrayCode

Number
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

% Thegraycodeisareflective digitalcodewhichhas the special propertythat

anytwosubsequentnumberscodes differ byonlyonebit. This is also calledaunit-distance code.

7

between two successiveintegers whicharebeing coded.

Example:
Binary toGray CodeConversion:
Any binary number can be converted into equivalent Gray code by the following steps:

i) the MSB of the Gray code is the same as the MSB of the binary number;

% Importantwhenananalogquantity mustbeconvertedtoadigitalrepresentation.Onlyonebitchanges

ii)the second bit next to the MSB of the Gray code equals the Ex-OR of the MSB and second bit of
the binary number; it will be 0 if there are same binary bits or it will be 1 for different binary

bits;

iii) the third bit for Gray code equals the exclusive-OR of the second and third bits of the binary

number, and similarly all the next lower order bits follow the same mechanism.

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 12

b1y b2 b3) bid) bE)

1@ 1 a*1 g0 & ™1 binary
1 0 0 1 1 qray
a(1) af2) a(3) a(4) a()

o) o1y xor B{2y B2 xorbi{3) b{3yxor(4} o{4)xor b5

GrayCode to Binary Code Conversion:
Any Gray code can be converted into an equivalent binary number by the following steps:

I. The MSB ofthe binary number is the same as the MSB of the Gray code.

il. the second bit next to the MSB of the binary number equals the Ex-OR of the MSB of the binary
number and second bit of the Gray code; it will be O if there are samebinary bits or it will be 1
for different binary bits;

iii. the third bit for the binary number equals the exclusive-OR of the second bit of the binary number
and third bit of the Gray code, and similarly all the next lower orderbits follow the same
mechanism.

() 9@ 9@ g g

1l

b(1) b{2) b3 b{4) b

g1y b1y xor g(2) b2)=or gi3) B(3pxorgid} b{&)xorgls)

Errordetectingcodes
» Whendataistransmitted fromonepointtoanother, likeinwirelesstransmission, or itisjuststored,
likeinharddisksand memories,therearechancesthatdata maygetcorrupted.
» Todetectthesedata errors,weusespecialcodes,whichareerrordetection codes.

Twotypes ofparity

» Evenparity:Checksifthereisanevennumberofones;ifso,paritybitiszero. Whenthenumberof
one’sisoddthenparitybitissetto 1.

» OddParity:Checksifthereisanodd numberofones;ifso,paritybitiszero. Whenthenumberof
one’siseventhenparitybitis set to 1.

Errorcorrectingcode

» Error-correctingcodesnotonlydetecterrors,butalsocorrectthem.
» Thisisused normallyinSatellite communication,whereturn-aroundde layisveryhighasisthe

B.ARUNKUMAR, Asst. Prof.,/ECE Page 13

probabilityofdata gettingcorrupt.

Hamming codes

» Hammingcodeaddsaminimumnumberofbitstothedatatransmitted inanoisychannel,tobeableto
correct everypossible one-bit error.
> It candetect(not correct)two-biterrorsandcannotdistinguish betweenl-bitand2-bits

inconsistencies. ltcan't-ingeneral-detect 3(ormore)-bits errors.
Alphanumeric Codes

> An alphanumeric code is a binary code of a group of elements consisting of ten decimal digits, the
26 letters of the alphabet (both in uppercase and lowercase), and a certain number of special
symbols suchas #, /, &, %, etc.

ASCII(AmericanStandardCode for Informationinterchange)
> It is actually a 7-bit code, where a character is represented with seven bits.

» The character is stored as one byte with one bit remainingunused.
> But often the extra bit is used to extend the ASCII to represent an additionall28 characters.

EBCDIC codes
> EBCDICstandsforExtendedBinary CodedDecimallnterchange.
» It is also an alphanumeric code generally used in IBM equipment and in large computersfor
communicating alphanumeric data.
> For the different alphanumeric characters the code grouping in this code is different from the
ASCII code. It is actually an 8-bit code and a ninth bit is added as the parity bit.

Fhkhhhhkhkhkkkhkhkhhhhhkhkhkhkkkhkhkhirrhkhhhkhiirrhhhkhhhkhiiriiiiixhiix

B.ARUNKUMAR, Asst. Prof.,/ECE Page 14

Boolean Algebra and Theorems

Explain various theorems of Boolean algebra. (Nov — 2018)

Definition:

Boolean algebra is an algebraic structure defined by a set of elements B, together with two binary
operators. +’ and *-°, provided that the following (Huntington) postulates are satisfied,

Theorems of Boolean algebra:

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and also
to transform the given expression into a more useful and meaningful equivalent expression.

T1: Commutative Law
(a) A+B=B+A
(b) AB=EBA

T2: Associative Law
()(A+B)+C=A+(B+C)

T6: Redundancy
{a) A+AB=4
(b) A(A+B)=A

T7: Operations with “0* & 1°
(a) O+A=4

(by(AB)C=A(BC) (b) TA=A
(c) I+A=1

T3: Distributive Law (d) 0A =0
(@WAB+C)=AB+AC T8 : Complement laws
b)A+(BC)=(A+B)(A+C) mA+A4A=1

. (byA.A =0
T4: Identity Law
(a) A+A=A T9: (a)A+AB=A+B
(b) AA=A (b)A.(A+B)=A.B

T5: Negation Law
(A)=A and (4)=4

Postulates of Boolean algebra:

The postulates of a mathematical system form the basic assumptions from which itis possible to
deduce the rules, theorems, and properties of the system. The following are the important postulates of
Boolean algebra:
1.1.1=1,0+0=0.
2.1.0=01=0,0+1=1+0=1.
3.00=0,1+1=1
4.1’=0and 0’ = 1.

Many theorems of Boolean algebra are based on these postulates, which can be used to
simplifyBoolean expressions.

The operators and postulates have the following meanings:
The binary operator + defines addition.

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator .(dot) defines multiplication.

The multiplicative identity is 1.

The only distributive law applicable is that of .(dot) over +:

AN NN A

B.ARUNKUMAR, Asst. Prof.,/ECE Page 15

a.b+c)=(@.b)+(@.c)

Two-Valued Boolean Algebra:
A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with
rulesfor the two binary operators + and .(dot) as shown in the following operator tables.

X ¥y Xy LI Xty X x'

0 1]] o0)] 1
0 1] 01 1 0
1 1]] 10
1 1 1 1 1

—

[E

Duality Principle:

The duality principle states that every algebraic expression deducible from the postulates of
Boolean algebra remains valid if the operators and identity elements are interchanged. If the dual of an

algebraic expression is desired, we simply interchange OR and AND operators and replace 1’s by 0’s and
0’s by 1’s.

DeMorgan’s theorem:
1. The complement of product is equal to the sum of their complements. (X.Y)'=X"+Y’
2. The complement of sum is equal to the product of their complements. (X+Y) = XY’

Basic Theorems:
State and prove postulates and theorems of Boolean algebra.
Postulates and Theorems of Boolean Algebra

Postulate 2 (a) 1+0=x (b) r-1=x

Postulate 5 (a) x+x' =1 (b) x-x'=10

Theorem 1 (a) X+x=x (b) X'x=x

Theorem 2 (a) 1+1=1 (b) 1-0=

Theorem 3, involution (x')' =x

Postulate 3, commutative (a) IT+y=y+x (b) Xy =yx

Theorem 4, associative (a) x+(p+z)=(x+y+z (b) x(vz)=(xy)z
Postulate 4, distributive ~ (a) x(y+z)=xy + 1z b) x+yr=(x+yx+2)
Theorem 5, DeMorgan~ (a) (x +y)=xy (b) (xy) =x"+y
Theorem 6, absorption (a) Y+xy=x (b) x(x+y)=x

B.ARUNKUMAR, Asst. Prof.,/ECE Page 16

THEOREM 1(a): x +x = x.

Statement Justification
r+xr=(x+x)-1 postulate 2(b)
={x+x)}{x +x) 5(a)
=X+ xx' 4(b)
=x+10 5(b)
=4 2(a)

THEOREM 1(b): x-x=1x.

Statement Justification
x-x=xx+10 postulate 2(a)
= xx + xx' 5(b)
= x(x + x) 4(a)
=x-1 5(a)
=X 2(b)

THEOREM 2(a): x+1=1.

Statement Justification
x+1=1-(x+1) postulate 2(b)
=X+ x")x +1) 5(a)
=x+x-1 4(b)
=x+x' 2(b)
=1 S(a)

THEOREM 2(b): x-0 = 0 by duality.

THEOREM 3: (x’)’ = x. From postulate 5,we havex + x" = land x-x" = 0, which
together define the complement of x. The complement of x’ is x and is also (x")".

THEOREM 6(a): x + xy = x.

Statement Justification
X+xy=x-1+uxy postulate 2(b)
=x(1 + y) 4(a)
=x(y + 1) 3(a)
=x-1 2(a)
=X 2(b)

THEOREM 6(b): x(x + y) = x by duality.

*hkhkkhkhkhkkhkhkhkkhkhkhkhhkhkhhhkhhhkhkhhkkhkhhkkhkhhkkhkhhkhiikik

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 17

Boolean Functions

% Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and 1, and
the logic operation symbols.

%+ Foragiven value of the binary variables, the function can be equal to either 1 or 0.

Example, consider the Boolean functionF1 = x +y’z

The function F1 isequal to 1 if x isequal to 1 or if both y* and z are equal to 1. F1 is equalto 0 otherwise.
The complement operation dictates that wheny’ =1, y =0. Therefore,F1 =1 ifx =1 orify=0and z = 1.
A Boolean function expresses the logical relationshipbetween binary variables and is evaluated by
determining the binary value ofthe expression for all possible values of the variables. The gate
implementation of F1 is shown below.

; P—) —

Example: Consensus Law: (function 4)
Simplify the following Boolean functions to a minimum number of literals.

L x(x'+y)=xx"+xy =0+ xy = xy.
Zox+xy=x+xNax+y)y=lix+y)=x+y
L x+yix+y)=x+xy+xy + ' =x(l+y+y)=nx
4 Xy + X7 +yI=xy + X7+ yi(x +x7)
=Xy +x'Z +2xyr +x'yz
=xy(1 +z) +x'z(1 +¥)
=Xy + x'L.
(X + YT+ 2y + 2) = (x + y)x' + z), by duality from function 4.

n

Complement of a function:

The complement ofa function F is obtained from an interchange of 0’s for 1’sand 1’s for 0’s in the value
of F.

Example:

1.
(A+B+C) =(A+x) IletB+C=x

= A'x’ by theorem 5(a) (DeMorgan)
=A'(B + ()’ substitute B + ¢ =x

= A'(B'C") Dby theorem 5(a) (DeMorgan)
=A'B'C" by theorem 4(b) (associative)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 18

2. Find the complement of the functions F1 = x’yz’ + xX’y’z and F2 = x(y’z’ + yz).
By applying DeMorgan’s theorems as many times as necessary, the complements arecobtained as
follows:
Fl=(@x'yr'+xy2) =xyVxy)y =x+y +2)x+y+2z1"
Fi=[xyz' +yn)] =x"+@7 +y) =x" +0Q2)Y0z)
=x"+{y+)y +2"
=x"+yz' +y'z

3. Find the comple ment of the functions F1 = x’yz’ + x’y’z and F2 = x(y’z’ + yz) by taking their
duals and comple menting each literals.
Solution:
1. Fi=x"yz' +x'y'L.
The dualof Fyis(x" + y + 2)(x" + ¥" + 7).
Complement each literal: (x + ¥" + Z)(x + y + ") = Fl.

2

F,=x(y'z" + yz).
The dualof Fsisx + (' + 27)(y + 2).
Complement each literal: x* + (v + 2)(v" + z') = Fi.

Fhhhhhkhkkkhkhkhkhirhhhkhkkhkhkhrrrhhhhkhhkhkhirrhihhhhhiiiriiixixdx

Canonical and Standard forms:
Explain canonical SOP & POS form with suitable example.

» Binary logic values obtained by the logical functions and logic variables are inbinary form. An
arbitrary logic function can beexpressed in the following forms.
(1) Sumof the Products (SOP)
(i) Product of the Sums (POS)
> Boolean functions expressed as a sum of minterms or product of maxterms are said to be in
canonical form.

Product term:

The AND function is referred to as a product. The variable in a product term can appear either in
complementary or uncomplimentary form. Example: ABC’
Sumterm:

The OR function is referred to as a Sum. The variable in a sum term can appear either in
complementary or uncomplimentary form. Example: A+B+C’
Sum of Product (SOP):

The logical sum of two or more logical product terms is called sum of product expression. It is
basically an OR operation of AND operated variables. Example: Y=AB+BC+CA
Product of Sum (POS):

The logical product of two or more logical sum terms is called product of sum expression. It is
basically an AND operation of OR operated variables. Example: Y=(A+B).(B+C).(C+A)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 19

Minterm:
A product term containing all the K variables of the function in either complementary or
uncomplimentary form is called Minterm or standard product.

Maxterm:
A sum term containing all the K variables of the function in either complementary or

uncomplimentary form is called Maxterm or standard sum.

Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
X ¥y z Term Designation Term Designation
0 0 0 x'y'z’' rriy, x+y+z M
0 0 1 x'y'z i x+y+z My
0 1 0 x'vz’ L x+y +z M-
0 1 1 x'yz "y x+y +z' M,
1 0 0 xy'z’ ny x+y+z My
1 0 1 xy'z rris x'+y+z M,
1 1 0 xyz' g, x+y +z M,
1 1 1 xyz My xX+y +z M-

Canonical SOP Expression:
The minterms whosesum defines the Boolean function are those which give the 1’s of the
function in a truth table.
Procedure for obtaining Canonical SOP expression:
v' Examine each term in a given logic function. Retain if it is a minterm, continue to examine the
next term in the same manner.
v' Check for the variables that are missing in each product which is not minterm. Multiply the
product by (X+X), for each variable X that is missing.
v Multiply all the products and omit the redundant terms.
Example:
Express the Boolean function F = A + B’C as a sum of minterms. (May -10)(Nov — 2018)
Solution:
The function hasthree variables: A, B, and C.
The first term A is missing two variables; therefore,
A=A(B+ B’)=AB+AB’
This function is still missing one variable, so
A=AB(C+C)+AB’(C+C)
= ABC + ABC’ + AB’C + AB’C’
The second term B’C is missing one variable; hence,
BC=B'C(A+A’)=AB'C+A’BC

B.ARUNKUMAR, Asst. Prof.,/ECE Page 20

Combining all terms, we have
F=A+BC=ABC + ABC’+ AB’C + AB’C’+ A’B’C

But AB’C appears twice, and according to theorem 1 (X + x = X), it is possible toremove one of

those occurrences. Rearranging the minterms in ascending order, wefinally obtain
F=AB’C+AB’C+AB’C + ABC’ + ABC=m1+ m4 +m5+m6 +m7
F(A,B,C)=>(1,4,5,6,7)

Example:Obtain the canonical sum of product form of the following function. (May 2014)
F(A B, C)=A+BC
=AB+B)(C+C)+BC(A+A)
= (AB + AB’) (C + C’) + ABC + A'BC
= ABC + AB'C + ABC' + AB'C’ + ABC + A'BC
= ABC + AB'C + ABC' + AB’C’ + A'BC (as ABC + ABC = ABC)
Hence the canonical sum of the product expression of the given function is

F (A, B) = ABC + AB'C + ABC’ + AB'C’ + A'BC.

Canonical POS Expression:
The Maxterms whose product defines the Boolean function are those which give the 1’s of the
function in a truth table.
Procedure for obtaining Canonical POS expression:
v' Examine each term in a given logic function. Retain if it is a maxterm, continue to e xamine the
next term in the same manner.
v Check for the variables that are missing in each sum which is not maxterm. Add (X.X’), for each
variable X that is missing.
v Expand the expression using distributive property eliminate the redundant terms.
Example:
Express the Boolean function F = xy + x'z as a product of maxterms. First, convert
the function into OR terms by using the distributive law:
F=xy+xz={xy + x)xy + z2)
= (r +)y + 2)x +)y + 2)
= (x' + ¥)x +)y + 2)
The function has three variables: x. v, and z. Each OR term is missing one variable;
therefore,
Mt y=xt+tyv+zz ="yt +v+z0)
x+z=x+z+w =x+y+)x+y +2)
y+z=y+z+xx’=(x+y+x +y+3)
Combining all the terms and removing those which appear more than once, we finally
obtain
F=r+y+z)ix+y +2)x" +v+z)x +yv+2)
= MyM-MMs;
A convenient way to express this function is as follows:
Flx, v, z) = (0. 2,4, 5)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 21

Example:
Obtain the canonical product of the sum form of the following function.
F(A,B,C)=(A+B)B+C)(A+C" (Dec 2012)

Solution:

F (A, B, C)

(A+B) (B +C)A+C)
=A+B" +0)(B+C+0(A+C +0)
=A+B " +CCH (B +C+AA) A+ C +BB)
=A+B +CA+B +CHA+B+C)(AA+B+C)(A+B+ (C)
(A+B +0C"
[using the distributive property, as X + YZ = (X + Y)X + Z)]
=A+B +CA+B +C)A+B+C)(A+B+C)(A+ B+ (C)
[as A+B +CHYA+B +C)=A+B + C']
Hence the canonical product of the sum expression for the given function is
FALB,C) =A+B +C0A+B +CHA+B+C)A+B+C)A+B+C)

kkhkhkhkhkhkkhkhkhkhihhhhhhkhkhiihhikhhhihiix

Karnaugh Map (K-map):

%+ Using Boolean algebra to simplify Boolean expressions can be difficult. The Karnaugh map provides
a simple and straight-forward method of minimizing Boolean expressions which represent
combinational logic circuits.

s A Karnaugh map is a pictorial method of grouping together expressions with common factors and
then eliminating unwanted variables.

% A Karnaugh map is a two-dimensional truth-table. Note that the squares are numbered so that the
binary representations for the numbers of two adjacent squares differ in exactly one position.

Rules for Grouping together adjacent cells containing 1's:
« Groups must contain1, 2, 4, 8, 16 (2") cells.
e Groups must containonly 1 (and X if don't care is allowed).
o Groups may be horizontal or vertical, but not diagonal.
e Groups should be as large as possible.
o Eachcell containing a 1 must be in at least one group.
e Groups may overlap.
e Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost
celland the top cell in a column may be grouped with the bottom cell.
e There should be as few groups as possible.

Obtaining Product Terms

o If Ais avariable that has value 0 in all of the squares in the grouping, then the complemented
form A'is in the product term.
o If Aisa variable that has value 1 in all of the squares in the grouping, then the true form A is in

the product term.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 22

http://electronics-course.com/combinational-logic

is not in the product term
The Format of K-Maps:

K-Maps of 2 Variables:

If A is a variable that has value O for some squares in the grouping and value 1 for others, then it

y v
y P, v PR
£ 0 1 N 0 1
iy T I, iy ¥y
0 0 1 ..-a-*"""fp
iz iy fi']'z HI_\
X4l 1 SR 1 1
e
X <
(a) xy (b)yx +y
K-Maps of 3 Variables:
< Simplify the boolean function F(x,y z)= £(2.3.4.3)
J:z '—J:_- “..f}J
* 00 01 11 10
iy nry ny my
0 1 1
i, Hlg iy [
x4 1 1 1
/
__'
ay’ £
F(x,y, 2) = Z(2, 3, 4, 5) = x'y + xy'
< Simplify the boolean function F(x,y,2)= £3.46,7
}F
¥z _ e
-‘f 00 01 11 10
"y ny ms iy | _— ¥2
0 1+ |
my s m; [
vel 1 1 1
-
X'z ‘ e

Note:xy'z! + xyz' =xz’

F(x, y,2)=2(3,4,6,7)=yz + xz'

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 23

K-Maps of 4 Variables:

¥
N —_——
W 0o m 11 10
Ay My L] i)
my m, My M1, 00 (wix'y'z" | wix'yz | wix'vz | wix'yz’
iy i, iy ,
iy M m1; mIg M [w'xy'z | wixy'z | wixyz | whaps'
iz My My iy [
miz mys M5 "y 11| wxy'z" | wxy'z | wxyz | wrxyz'
"1 g Mg My My
g "y my, My, 10 [wx'y'z" | wx'y'z | wa'vz | wx'yz'
PR
(a) (b)
< Simplify the boolean function F(w,xy,z)= £(0.1,.2,4,5,6,8,9,12,13,14)
WX % '
’ 00 01 11 10
w'y'z' ~—_ iy n 1y Ny
0T=1 | 1 .
}i'J'_| J‘i'l'5 PJJ'-I. J‘i'J"'.,| W '}JZ
01 1 1 1
X
1”13 J‘i'l'l_.l 1‘:|J'|5 J‘””
1] 1 1 1 — prt
'z xvz
w
JJJ’S niy f”“ .FJJ'“I
10 1 1
/’
/
y' ¢
Note:w'y'z" + w'yz' = w'g’
xy'z' +ayz =xz’
Flw,x,y,z) = 2(0,1,2,4,5,6,8,9,12,13,14) = y' + w2z + xz

Simplify the Boolean function
F(w,x,y,z) = 2(1,3,7,11, 15)
which has the don’t-care conditions

d(w,x,y,z) = 2(0,2,5)

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 24

¥z _— ¥z —_
wx 00 01 11 10 wx 00 01 11 10
my my iy my iy iy My i1,
00| X 1 1 X o X | 1 1 X
Wwx — u:l"z _._._._______,_._.—-"'"_'_
M, Hig iy ", iy s iz g,
01 0 X 1 1] 01 0 X 1 0
X X
my, My s myy s i3 Mys iy
11 0 0 1 0 11 0 0 1 0
W g Hig T "y, W iy iy iy [
| 0 0 1 0 | 0 0 1 0
™~ ~]
\-_‘,.—'
; \ . \
}'2 }rz
(a) F=yz +w'x' (b)F=yz +w'z

Note:
Karnaugh Maps - Rules of Simplification

The Karnaugh map uses the following rules for the simplification of expressions by grouping
together adjacent cells containing ones

e Groups may not include any cell containing a zero
A

5 0 1 5 0 1

o 10 of o

1 N s
WRONG X RIGHT -/

o Groups may be horizontal or ve rtical, but not diagonal.

B 0 1 B 0 1

al o L al o

[A [|

B.ARUNKUMAR, Asst. Prof.,/ECE Page 25

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj

« Groups must containl, 2, 4, 8, or ingeneral 2" cells. That is if n=1, a group will contain
two 1's since 2! = 2. If n= 2, a group will contain four 1's since 2% = 4.

B
5 0 1 00 ol 11 10
ol 1T [Tje—lGrawpof2 o o |7 [T [Tk Cronpof3
— % B E— I ¢
- 0 1| o o | ol o
RIGHT -~ WRONG
B
3 0 1 00 ol 11 10
ol 1 ol T 1| 1 | 1id—Creupof 5
| et Growpof 4 | ! N
tlir |1 i o] o 4 A
RIGHT -~ WRONG %

e Eachgroupshould be as large as possible.
B B

o0 ol 11 10 o0 o1 11 10
of 11| 1 | U1 o t1_| 1l [1]
E :\/ S hd
oo of | 1] oo | oftt | 1
RICHT .~ WRONG X

(I ote that no Bocolean laws broken,
but not sufficiently minimal)

o Eachcell containing a one must be in at least one group.

5
anoooal 11 10

o o 0 1'1‘I roup I

S | present in at least ene group.

Il n 0 o |17 [roup (1

B.ARUNKUMAR, Asst. Prof.,/ECE Page 26

« Groups may overlap.
B

0 'll _ I | | 1 }--c—Gmups overlapping,

i O] o v
RIGHT "~
E
o0 o1 11 10
0 {1"""11I {1"""11I
R e Y, (3roups not overlapping.
1 ':' ':' Ill_____l_r1|

WRONG

e There should be as few groups as possible, as long as this does not contradict any of the
previous rules.

B B
oo ol 11 10 oo 01 11 10
N ol 11| ti| |1
: :\/ S =y
oo 0| 11| 1, Il g o [11 | 1
RIGHT - WRONG X
Summmary:

No zeros allowed.

No diagonals.

Only power of 2 numbers of cells in each group.
Groups should be as large as possible.

Everyone must be in at least one group.
Overlapping allowed.

Worap around allowed.

Fewest numbers of groups possible.

©ONo O~ wDd R

Don’t care combination:

In certain digital systems, some input combinations never occur during the process of normal
operation because those input conditions are guaranteed never to occur. Such input combinations are
don’t care conditions.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 27

Completely specified functions:

If a function is completely specified, it assumes the value 1 for some input combinations and the
value O for others.

Incompletely specified functions:

There are functions which assume the value 1 for some combinations and O for some other and
either 0 or 1 for the remaining combinations. Such a functions are called incompletely specified .

Prime Implicants:

A primeimplicant is a product term obtained by combining the maximum possible number
ofadjacent squares in the map. If a minterm in a square is covered by only one primeimplicant, that prime
implicant is said to be essential.

*hhhhkhkkkkhkhkhkhhhhhkhkhkhhkhkhkirrhikhhhhihiiiiix

Quine-McCluskey (or) Tabulation Method

Minimization of Logic functions:

Steps:
v' Asetofall prime implicants of the function must be obtained.
v" Fromthe set of prime implicants, a set of essential implicants must be determined by
preparing a prime implicant chart.
v The minterm which are not covered by the essential implicants are taken into
consideration and a minimum cover is obtained from the remaining prime implicants.
Example: (Nov-06,07,10,May- 10,08)
Simplify the boolean function F(A,B,C,D)=>m (1,3,6,7,8,9,10,12,14,15) + > d (11,13) using Quine
McClusky method. (Apr 2017)
Step:1

B.ARUNKUMAR, Asst. Prof.,/ECE Page 28

Minterms Binary representation | Minterms Binary representation
my 0001 m, 0001 ¥
m; 0011 mg 1000
mg 0110 m; 0011 v
m- 0111 mg 0110 ¥
mg 1000 mg 1001
mg 1001 myq 1010 ¥
my, 1010 my, 1100 v
m,, 1100 m 0111 ¥
m;y 1110 myy 1110 ¥
mys 1111 dmy, 1011 v
dm, 1011 dm, 1101
dm,; 1101 m;s 1111 v

Step:2

Minterms Binary representation Minterms Binary representation
1,3 00-1 v 1,39 11 -0-1
1,9 -001 ¥ 8,910,111 v 10--

8,9 100- v 8,10, 12, 14 1--0
8,10 10-0 v
8, 12 1-00 v 67,14, 15 v =1l=
3,7 0-11 v
3,11 -011 v 12, 13, 14, 15 11-—
6, 7 011- ¥
6, 14 -110 ¥
9,11 10-1 ¥
9,13 1-01 ¥

10, 14 1-10 v

10, 11 101- v

12, 14 11=0 ¥

12,13 110- v

7,15 -111 ¥

14, 15 111- v

B.ARUNKUMAR, Asst. Prof.,/ECE Page 29

Step:3

Prime implicants Binary representation
1, 3,9 11 (BD) -0-1
8,9, 10, 11, 12, 13, 14, 15 (A) 1 ===
6, 7, 14, 15 (BC) -11-
Step:4
Prime

. Mq | M | Mg | My | Mg | Mg [Mag | Mys | Mgy | My |[dmaqldm
lmpllcants 1 3 6 T 8 9 10 12 14 15 11 13

1,3,9,11(ED) ©O1[O) ® ®
8,9, 10, 11, 12, 13, 14, 15 OIOIOIOIOIOIOIG
6,7, 14, 15 (BC) OlG OO

.~ F(A,B,C,D) = BD+A+BC

khkhkkhkhhhkhkhkhkkkhkhkhhhrhkhkhkhhkhhihirrhhkhhhkhriirhhhdihhihiiix

Logic gates

Explain about different types of logic gates. (OR) What are Universal gates? Construct any four basic
gates using only NOR gates and using only NAND gates. (May 2011)[NOV - 2019]

o,

% Alogic gate is an idealized or physical device implementing a Boolean function; that is, it performs a
logical operation on one or more logical inputs, and produces a single logical output.

Positive and Negative Logic

X/

« The binary variables two states, ie. the logic ‘0’ state or the logic ‘1’ state. These logic states in
digital systems such as computers.

«» These are represented by two different voltage levels or two different current levels.

+« Ifthe more positive of the two voltage or current levels represents a logic ‘1’ and the less positive of
the two levels represents a logic ‘0°, then the logic system is referred to as a positive logic system.

¢ If the more positive of the two voltage or current levels represents a logic ‘0’ and the less positive of

the two levels represents a logic ‘1°, then the logic system is referred to as a negative logic system.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 30

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Logical_operation

Truth Table
A truth table lists all possible combinations of input binary variables and the corresponding
outputs ofa logic system.

Graphic Alpehraic Truth
Mame symhal fianction tahle
r y| F
AND — F—F Fozeyp A
I af o
I 1] 1
x y§| F
e e L
I o 1
I 1] 1
x| F
[nverter r—{:}o—]‘- =1 T_]
110
x| F
Buflzr r—t}—]‘- F=x T_EI
111
x y§| F
NAND i F o F=ig) bool
’ ¥ — roL 1
I o 1
1l 1| 0
r y| F
\ T i oo 1
NOR ri}_‘P Fuix+)) b 1| o
I @ o0
1 1| 0
r §| F
Exclusive OR x g Few oy b oo
(XOR) ¥ =xehy (L |
I o 1
I 1| o
r §| F
E'p:r_'lusi::-FDR x e Feyp+x'y o ool
equivalence ¥ —)j j: = fxedy) T [l:- g
I 1] 1

Universal Gates

s The OR, AND and NOT gates are the three basic logic gates as they together can be used to
construct the logic circuit for any given Boolean expression.

% The NOR and NAND gates have the property that they individually can be used to hardware-
implement a logic circuit corresponding to any given Boolean expression.

% That is, it is possible to use either only NAND gates or only NOR gates to implement any
Boolean expression. This is so because a combination of NAND gates or a combination of NOR
gates can be used to perform functions of any of the basic logic gates. It is for this reason that
NAND and NOR gates are universal gates.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 31

NAND gatesandNOR gatesarecalleduniversalgates or universalbuildingblocks, as any
type of gates or logic functions can be implemented by these gates. Figures

SymbolIshowshow variouslogic functionscan be realizedby NAND gatesandFigures
Symbolshow therealizationofvariouslogic gatesby NOR gates.

(ABY
AO‘-@F:A' # :);Ej:};q::,qn
B Oe—w

NOT function:F =A'AND function: F=AB

+« Implementation of basic gates using NAND gate:
(convert AND gate to NAND gate)

Inverter x D«‘ X
X — .
AND 3 xy

. Logic operations with NAND gates

X . X) , i)
OR :b (') y— {xyz) ¥ +y +z (x¥z)
¥ M {a) AND-invert {b) Invert-OR

+« Implementation of basic gates using NOR gate:
(convert OR gate to NOR gate) , , ,
Logic operations with NOR gates

Inverter x D)O x'
x
¥ x+yv+z)
X L)
OR v DC r X (a) OR-invert

X —
I
AND ﬁ% (x' + ¥ =xy (b)) Invert-AND
¥ [>e

Implementation of basic gates using NAND gate:
Inverter (NOT gate):

A —
¥=A

AND gate:

A

B

B.ARUNKUMAR, Asst. Prof.,/ECE Page 32

OR gate:

A_E} Y=A+B
=

Implementation of basic gates using NOR gate:

Inverter (NOT gate):

A -

AND gate:

NAND-NOR implementations:

» Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and
OR gates.

» NAND and NOR gates are easier to fabricate with electronic components and are the basic gates
used in all IC digital logic families.

> Because of the prominence of NAND and NOR gates in the design of digital circuits, rules and
procedures have been developed for the conversion from Boolean functions given in terms of
AND, OR, and NOT into equivalent NAND and NOR logic diagrams.

Only NAND/NOR gate circuit:

» A convenient way to implement a Boolean function with NAND/NOR gates is to obtain the
simplified Boolean function in terms of Boolean operators and then convert the function to
NAND/NOR logic.

» The conversion of an algebraic expression from AND, OR, and complement to NAND/NOR can
be done by simple circuit manipulation techniques that change AND-OR diagrams to
NAND/NOR diagrams.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 33

T . l . ¥ .
¥ (xyvz) ¥ x4y 4+ = (xyz)

(a) AND-invert (b} Invert-OR
T . 'r r ¥ r
¥ (x +y+2z) ¥— xyi'=ix+y+z)
I I—0

{a) OR-invert (b) Invert-AND
NAND Implementation Procedure:

v Draw the AOI logic of given Boolean expression.
Add bubble on input of OR gate & output of AND gate.
Add an Inverter on each line that received bubbles.
Eliminate double inversions

Replace all by NAND gates

D N N NI N

Example:
1. Implement F = AB + CD using only NAND gate.

A —
B—
F
C—
n—
[a)

- D
B — B
T T
I — D

(b) (c)

2. Implement the following Boolean function with NAND gates:F (x, y, z2) = (1, 2, 3,4, 5, 7) (Apr
2018)

J' Ty [T iy e
a sl 1 1 1 F=xy" +x'y +z

B.ARUNKUMAR, Asst. Prof.,/ECE Page 34

, | i,
A Ao D

(b) (c)

3. Implement the function F = (AB’ + A’B)(C + D’) using only NAND gate.

A _]
B —

AN —

. — D
C
iy

(a) AND-OR gates

B —

— B
D

(b)) NAND gates

B.ARUNKUMAR, Asst. Prof.,/ECE Page 35

2.7.1 NAND gate implementation

Example 2.10: Implement the Boolean function with NAND gates. F=AB+CD+E

Solution: "
Step 1: Draw AND-OR circuit. : :)—

E
Step 2: Add bubbles on output of each AND gate A—
and input of OR gate. g —

Step 3: Replace other gates by NAND gates. ; >_L
—]

Example 2.11: Implement the Boolean expression with NAND gates Y=((A+B)C)D

L

Solution: Step 1: Draw original logic diagram for

v=((4+B)C)D QID—
(4+5)C) C_J—D"‘HD_Y

B.ARUNKUMAR, Asst. Prof.,/ECE Page 36

Step 2 Add bubblcj\ on the output of the AND gates and input of the OR gate.

, 2>

C —

| D
Step 3: Add inverters on cach line that received a bubble.

A

B

° | : > p—p—Y
| Step 4: Eliminate double inversions,

A

| C |
D
Step 5: Replace the other gates by only NAND gates.

.

A h ‘
g F}}}U}Y

Example 2.12: Implement NAND gates for ¥=(4B+C)D+EF . (April 2004)

Solution: Step 1: Draw the original logic diagram for the expression Y =(AB+E)D+EF

A —

p) J—=—
- D >

=

mTmo O

B.ARUNKUMAR, Asst. Prof.,/ECE Page 37

Step 2: Add bubbles on the output of the AND gates and input of the OR gates. w

o »—

-

3,___

TMo o

Step 3: Add inverters on each line that received a bubble.

s P >

B s
D

E

F

Step 4: Eliminate double inversions.

=

C

D

E

F

Step 5: Draw the circuit with only NAND gates.

g—_—D"C::}_

NOR Imple mentation Procedure:

>

—D—ri}——_@_y

B.ARUNKUMAR, Asst. Prof.,/ECE

Page 38

Draw the AOI logic of given Boolean expression.
Add bubble on input of AND gate & output of OR gate.
Add an Inverter on each line that received bubbles.

Eliminate double inversions

AN N NN

Replace all by NOR gates

Example:
1. Implement F = (A + B)(C + D)E using only NOR gate. (Apr 2018)

] >——
D —

2. Implement F = (AB’ + A’B)(C + D’) using only NOR gate.
A’ J

B — |

F
D e)
B
c
n

B.ARUNKUMAR, Asst. Prof.,/ECE Page 39

2

lj Al

' % NOR gate implementation
a1 2.13: Implement the Boolean CXpression with NOR gates.
F=(A+B)C.D

golution:

gtep 1: DAV the original logic diagram for the given Boolean expression,

C 'D—F
%%H’)—F

Qj"—b‘l—_gj}—v—b-—#}p

B.ARUNKUMAR, Asst. Prof.,/ECE Page 40

MR AL ¥ 7Y

Example 2.14: Draw the multi level NOR circuit for the Boolean expression:
X=[(A+B)C+D](E+F)
Solution:

Step 1: Draw the original circuit diagram for X=[(A+B)C+ D] (E+F)

A jﬁ>——

B

By

Step 2: Add bubbles on the output of OR gates and add bubbles on the input of AND gates,

mTm O o

Ity

Step 3: Add inverters on each line that received bubbles.

|
;

-y ?

Step 4: Eliminate Double Versions.

T e L

B.ARUNKUMAR, Asst. Prof.,/ECE Page 41

mm OO0 o>

aw the NAND diagram using one graphic symbol.

A
B C

step 5: Dr:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 42

UNIT I
COMBINATIONAL LOGIC

Combinational Circuits — Analysis and Design Procedures - Binary Adder- Subtractor -Decimal Adder -
Binary Multiplier - Magnitude Comparator - Decoders — Encoders — Multiplexers - Introduction to HDL —

HDL Models of Combinational circuits.

°

K/

A

X3

25

>

X/
*

e

*

L X4

COMBINATIONAL CIRCUITS
A combinational circuit consists of logic gates whose outputs at any time are determined from only the
present combination of inputs.
A combinational circuit performs an operation that can be specified logically by a set of Boolean
functions.

—_— - . [— =
N Combinational

n inputs — S— — m outputs
P . circuit . outp

_— —

Sequential circuits:

Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of
the inputs and the state of the storage elements.

Because the state of the storage elements is a function of previous inputs, the outputs of a sequential
circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior must
be specified by a time sequence of inputs and internal states.

ANALYSIS PROCEDURE

Explain the analysis procedure. Analyze the combinational circuit the following logic diagram.
(May 2015)

The analysis of a combinational circuit requires that we determine the function that
the circuit implements.
The analysis can be performed manually by finding the Boolean functions or truth
table or by using a computer simulation program.
The first step in the analysis is to make that the given circuit is combinational or
sequential.
Once the logic diagram is verified to be combinational, one can proceed to obtain the
output Boolean functions or the truth table.
To obtain the output Boolean functions froma logic diagram,
v" Label all gate outputs that are a function of input variables with arbitrary symbols or names.
Determine the Boolean functions for each gate output.
v’ Label the gates that are a function of input variables and previously labeled gates with other
arbitrary symbols or names. Find the Boolean functions for these gates.
v’ Repeat the process in step 2 until the outputs of the circuit are obtained.
v’ By repeated substitution of previously defined functions, obtain the output Boolean functions in
terms of input variables.

Page 1

Logic diagram for analysis example

The Boolean functions for the above outputs are,
F, = AB + AC + BC
T,=A+B+C
T, = ABC
Next, we consider outputs of gates that are a function of already defined symbols:
T; = F3T)
Fi=T;+T1T,
To obtain F; as a function of A, B, and C, we form a series of substitutions as follows:
F=T;+ T, = FyT, + ABC = (AB + AC + BC)'(A+ B + C) + ABC
=(A"+B)(A"+C)(B' +C')(A+ B+ C) + ABC
= (A' + B'C')(AB' + AC’' + BC' + B'C) + ABC
= A'BC'+ A'B'C + AB'C' + ABC
Proceed to obtain the truth table for the outputs of those gates which are a function of previously
defined values until the columns for all outputs are determined.

Truth Table for the Logic Diagram

A B C s F5 T Ta Ts F
0 0 0 0 1 0 0 0 0
0 0 i 0 1 1 0 1 1
0 1 0 0 1 1 0 1 |
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 i 1
1 0 I 1 0 1 0 0 0
I 1 0 I 0 1 0 0 0
1 1 1 1 0 1 1 0 1

Page 2

*
A X4

*

<

<

R/
L X4

DESIGNPROCEDURE
Explain the procedure involved in designing combinational circuits.
The design of combinational circuits starts from the specification of the design objective and culminates
in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained.
The procedure involved involves the following steps,
From the specifications of the circuit, determine the required number of inputs and outputs and assign a
symbol to each.
Derive the truth table that defines the required relationship between inputs and outputs.
Obtain the simplified Boolean functions for each output as a function of the input variables.
Draw the logic diagram and verify the correctness of the design.

FhhkArkhkArAhkhkrhkhkrhkhkrkhhkrhhkikhihkhihhkhkihhkhkihhkihhkihhiihiiiiikx

CIRCUITS FOR ARITHMETIC OPERATIONS

Half adder:
Construct a half adder with necessary diagrams. (Nov-06,May- 07)

A half-adder is an arithmetic circuit block that can be used to add two bits and produce two outputs

SUM and CARRY.
The Boolean expressions for the SUM and CARRY outputs are given by the equations
SUMS=AB+AB

Truth Table: CARRY C=AB

A B S c

0 0 0 0 — —
A Half S

0 1 1 0 o Adder c

1 0 1 0

1 1 0 1

Logic Diagram: Half adder using NAND gate:
A

}C=A.B _E

*hhkkhkkrkkhkkhkkkkihkkkihkhkkihhkkiihikkiik

Page 3

Full adder:

Design a full adder using NAND and NOR gates respectively.

(Nov -10)

% A Full-adder is an arithmetic circuit block that can be used to add three bits and produce two outputs

SUM and CARRY.

%+ The Boolean expressions for the SUM and CARRY outputs are given by the equations

§=AB.C,+AB.C,+AB.C, +AB.C,
Cou = B.Cy +AB+A.C

Truth table:
Input variables Outputs
X A S C
0 0 0 0
0 0 1 0
0 1 1 0
0 1 0 1
1 0 1 0
1 0 0 1
1 1 0 1
1 1 1 1
Karnaugh map:
AB® AB AB APB AB AB AB AP
X 1 1 X’ 1
X 1 1 X 1 1 1
K-Map for Sum K-Map for Carry

*
*

¢ The simplified Boolean expressions of the outputs are

S=X'A'B+ X'AB’'+ XA'B'+ XAB

C=AB+BX+ AX

Logic diagram:

Page 4

AREEL

4
o m—
.

L
SB
L J
’ %D"% 1
— — =
—e
- —T—e
——
O B
% The Boolean expressions of S and C are modified as follows
S =XA'B + XAB’ + XA'B’ + XAB
=X (A'B + AB") + X (A’'B’ + AB)
=X (A®B)+ X (A& BY)
=X®A®B
C=AB+BX+AX =AB+X (A+ B)
=AB + X (AB + AB" + AB + A'B)
=AB + X (AB + AB’ + A’B)

= AB + XAB + X (AB’ + A'B)
=AB + X (A® B)

IZ';Z
7)

LLL.

Full adder using Two half adder:
+»+ Logic diagram according to the modified expression is shown Figure.

20‘_:7 D.—.%

X Oe

*hkhkkkhkhkkkhkhkkkhkhkkhkhkkhkhkkhkihkkiiikkiik

Page 5

Half subtractor:
Design a half subtractor circuit. (Nov-2009)

% A half-subtractor is a combinational circuit that can be used to subtract one binary digit from anotherto

produce a DIFFERENCE output and a BORROW output.
% The BORROW output here specifies whether a ‘1’ has been borrowed to perform the subtraction. The

L)
Boolean expression for difference and borrow is:

*

D=AB+AR
B,=A.B
A B D Bp
A D=A—BE 0 0 Q 0
Half
Subtractor 0 1 ! 1
B—» —= B i §] 1 0
1 1 1] 0

Logic diagram:

S S
o)

FEhAkAAhkAkAhkAAhkhkArhkhkkrhkhkkihkhkihkhkkihhkihhkiiikkiikx

Full subtractor:

Design a full subtractor. (Nov-2009,07)
¢ A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes

into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit

or not.
% As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits to be

subtracted and a borrow bit designated as Bin .
% There are two outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

BORROW output bit tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher

minuend bit. The Boolean expression for difference and barrow is:

D=AB.B,+ABB,+ABB,+AB.B,

B,=AB+ AR, +BE,

Page 6

Mirnuend | Subtrahend Borrow Difference Borrow
(A (B) In {Bin) (D) Out (Bg)
0] 0 0 0
0 0 1 1 1
A ——=0 0 1 0 1 1
Full
B — 0 1 1 0 1
2 i
Bin Sulbtractar 5o 1 0) 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
K-Map:
Bin Bin
AB = Bin AB Bin Bin
AB 1 AB 1
A | 1 AB || 1 1]
AB 1 AB 1
AB 1 AB
(&)
(b)
Difference Barrow

Full subtractor using two half subtractor:

HS

Bi"u

A———— D o A
HS

E—l B =

kkhkhkhhhhkhkhkkhkkhkhihrhkhkhkhhhhiiiihhkhkhhhiiikx

Page 7

Parallel Binary Adder: (Ripple Carry Adder):

Explain about four bit adder. (or) Design of 4 bit binary adder — subtractor circuit. (Apr — 2019)

A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be
constructed with full adders connected in cascade, with the output carry from each full adder connected
to the input carry of the next full adder in the chain.

Addition of n-bit numbers requires a chain of n- full adders or a chain of one-half adder and n-1 full
adders. In the former case, the input carry to the least significant position is fixed at 0.

Figure shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry
adder.

The carries are connected in a chain through the full adders. The input carry to the adder is CO, and it
ripples through the full adders to the output carry C4. The S outputs generate the required sum bits.

Example: Consider the two binary numbers A = 1011and B = 0011. Their sum S = 1110 is formed with
the four-bit adder as follows:

Subscript i 3 2 1 0
Input carry 0 1 1 0 C;
Augend 1 0 1 1 A,
Addend 0 0 1 1 B;
Sum 1 1 1 0 S,
Output carry 0 0 1 1 Citi
R 1 B, A, B, A B, A
C [0 [
FA -— FA -— FA -—— FA -—
Cy & 5 5 5

The carry output of lower order stage is connected to the carry input of the next higher order stage.
Hence this type of adder is called ripple carry adder.

In a 4-bit binary adder, where each full adder has a propagation delay of tp ns, the output in the fourth
stage will be generated only after 4tp ns.

The magnitude of such delay is prohibitive for high speed computers.

One method of speeding up this process is look-ahead carry addition which eliminates ripple carry
delay.

*khkhhhkhkhkkkhkhkhkhhhhhhhkhkhkhkhiiiihiihhhiix

Complement of a number:
1’s comple ment:
The 1°s complement of a binary number is formed bychanging 1 to 0 and O to 1.
Example:
1. The I’s complement of 1011000 is 0100111.
2. The 1’s complement 0f0101101 is 1010010.

Page 8

2’s comple ment:
The 2’s complement of a binary number is formed by adding 1 with 1’s complement of a binary
number.
Example:
1. The2’s complement of 1101100 is 0010100
2. The 2’s complement of 0110111 is 1001001

Subtraction using 2’s complement addition:

v The subtraction of unsigned binary number can be done by means of complements.

v’ Subtraction of A-B can be done by taking 2’°s complement of B and adding it to A.

v Check the resulting number. If carry present, the number is positive and remove the carry.

v' Ifno carry present, the resulting number is negative, take the 2’s complement of result and put
negative sign.

Example:

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(@) X-Yand (b) Y- X by using 2’s complements.

Solution:

(@) X =1010100

2’scomplement of Y = + 0111101

Sum= 10010001

Discard end carry. Answer: X - Y = 0010001

(b) Y=1000011

2’s complement of X=+ 0101100

Sum= 1101111

There is no end carry. Therefore, the answer is Y - X =-(2’s complement 0f 1101111) =-0010001.

*hkhkkkhkhkkkhkkhkkkhkhkkhkhkkhkhkkhkikkiihkkiik

Parallel Binary Subtractor:

Hia Aa B I B I‘i L5 I-
Con | pun (O C| pan [€n O gy |G Com| pun -
* Adder [¥ Adder Adder Adder
S ot 51 B

v The subtraction of unsigned binary numbers can be done most conveniently by meansof compleme nts.
The subtraction A - B canbe done by taking the 2’s complement of B and adding it to A . The 2’s
complement canbe obtained by taking the 1’s complement and adding 1 to the least significant pair

Page 9

ofbits. The 1’s complement can be implemented with inverters, and a 1 can be added tothe sum through
the input carry.

The circuit for subtracting A - B consists of an adder with inverters placed betweeneach data input B and
the corresponding input of the full adder. The input carry Cin mustbe equal to 1 when subtraction is
performed. The operation thus performed becomes A,plus the 1’s complement of B , plus 1. This is equal
to Aplus the 2’s complement of B.

For unsigned numbers, that gives A-B if A>=B or the 2’s complement of B - Aif A <B. For signed
numbers, the result is A - B, provided that there is no overflow.

*hkhkkkhkkhkkkhkhkkkhkhkkhkhkhkkhhkhkkhkihkkhkihkiik

Fast adder (or) Carry Look Ahead adder:

Design a carry look ahead adder circuit. (Nov-2010)
The carry look ahead adder is based on the principle of looking at the lower order bits of the augend
and addend to see if a higher order carry is to be generated.

It uses two functions carry generate and carry propagate.

Half adder Half adder

Consider the circuit of the full adder shown in Fig. If we define two new binaryvariables
P,= A ®B;
G, = AB,
the output sumand carry can respectively be expressed as
5.=P&C,
Ciy1 = G; + PC;
Gi is called a carry generate, and it produces a carry of 1 when both Aiand Biare 1,regardless of

the input carry Ci. Pi is called a carry propagate, because it determines whether a carry into stage i will
propagate into stage i+ 1 (i.e., whether an assertion of Ci will propagate to an assertion of Ci+1).

We now write the Boolean functions for the carry outputs of each stage and substitutethe value
ofeach Ci from the previous equations:

Page 10

X3

2

e

%

3

S

L X4

X3

25

X3

25

Cy = input carry

C, = Gy + PGy

C; =Gy + PICy = Gy + Py(Gy + PGy) = Gy + PGy + PiPyGy
Ci = Gy + P,Cy = Gy + PsGy + PsP,Gy = P,P\PyCy

?{,
TD

P-_u

{7z

J U HJL,LH

E;U

Logic diagram of carry lookahead generator

The construction of a four-bit adder with a carry lookahead scheme is shown in Fig.

Each sum output requires two exclusive-OR gates.

The output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates the Gi
variable.

The carries are propagated through the carry look ahead generator and applied as inputs to the second
exclusive-OR gate.

Alloutput carries are generated after a delay through two levels of gates.

Thus, outputs S1 through S3 have equal propagation delay times. The two-level circuit for the output
carry C4 is not shown. This circuit can easily be derived by the equation-substitution method.

Page 11

e

%

By —

A,

'P‘.‘- IJ

G,

B,—

[

Carry
Lookahead
Generator

By —

"pl. _II'?

By ——

T

Gy &

By Py

vAsIlvAsivAsly

I

—

Fhhhhkhkkkkhkhkhkhrhhkhkhkhkhhkhiirhikiiikd

4 bit-Parallel adder/subtractor:
Explain about binary parallel / adder subtractor. [NOV — 2019]

The addition and subtraction operations can be combined into one circuit with one common binary adder
by including an exclusive-OR gate with each full adder. A four-bit adder—subtractor circuit is shown in

Fig.

The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1, the

circuit becomes a subtractor.

Page 12

*
°e

X3

A

e

*

*
°e

e

%

7/
o

By A,

M

C,

C C, C,
< FA |—1 F4 |=
55 5, 5

It performs the operations of both addition and subtraction.
It has two 4bit inputs AsA2A1A¢ and B3B,B1By.
The mode input M controls the operation when M=0 the circuit is an adder and when M=1 the circuits

become subtractor.

Each exclusive-OR gate receives input M and one ofthe inputs of B .

When M = 0, we have B xor0 = B. The full adders receive the value of B, the input carry is 0, and the
circuit performs A plus B . This results in sum S3S,S;Spand carry C,.

When M = 1, we have B xor 1 = B> and Cp = 1. The B inputs are all complemented and a 1 is added
through the input carry thus producing 2’s complement of B.

Now the data AzA2A1Agwill be added with 2’s complement of B3B,B;1Bpto produce the sum i.e., A-B if

A>B or the 2’s complement of B-A if A<B.

kkhkhkhkhhhkhkhkhhkhkhkikiiiihihhhii

Comparators
Design a 2 bit magnitude comparator.

(May 2006)

It is a combinational circuit that compares two numbers and determines their relative magnitude. The
output of comparator is usually 3 binary variables indicating:
A<B, A=B, A>B

A——

B—

Magnitude
Comparator

———= A=-DB

— A=E

L » A=E

1-bitcomparator: Let’s begin with 1bit comparator and from the name we can easily make out that this
circuit would be used to compare 1bit binary numbers.

Page 13

A B A>B =B | A<B
0 0 0 1 0
1 0 1 0 0
0 1 0 0 1
1 1 0 1 0

For a 2-bit comparator we have four inputs A1 A0 and B1 BO and three output E (is 1 if two numbers are
equal) G (is 1 when A>B) and L (is 1 when A<B) If we use truth table and K-map the result is

A 0 1
010 0 Equation is A>B = AB
1 1 0
B A<B

A 0 1
0| g 1 T —

EquationisA<B = AB

1 a 0

The equation isf(A=B) = AB + AB
=AXNORB

Design of 2 — bit Magnitude Comparator.

The truth table of 2-bit comparator is given in table below

Page 14

Truth table:

Inputs Outputs
Az A Ay Ay A=B A=B A<B
0 0 0 1] 0 1 0
0 0 0 1 0 0 1
0 a 1 0 0 0 1
0] 1 1 0 0 1
0 1 0 1] 1 0 0
0 1 0 1 0 1]
0 1 1 1] 0 0 1
0 1 1 1 0 0 1
1 0 0 1] 1 0 0
1 a 0 1 1 0 a
1] 1 1] 0 1]
1 0 1 1 0 0 1
1 1 0 1] 1 0]
1 1 0 1 1 0]
1 1 1 1] 1 0 0
1 1 1 1 0 1 0

A>B = A¢B1'Bo"+ A1B1'+ AsAoBo” A=B = A1'A¢’B1'Bo’+ A1’AoB1'Bo+
A1A9B1Bo+ A1A0'B1Bo’

= A1'B1" (Ao’Bo’+ AoBo) + A1B1 (AoBo+ Ao'Bo’)
= (Ao © Bo) (A1 © Bq)

B, B
_z':'ﬂ.z':"x{\

00

01

11

10

A<B = A1"An"Bo+ An"B1Bo+ A1"Ba

Page 15

Logic Diagram:
Aq Ap B1

v[v[y

Bao

A>B = ApB1'Bo'+ A1B1'+

é?

AgAgBy’

)— A=B = (Ao © Bo) (A1 © B1)

VY

A<B = A1"Ay'Bo+ Ao'B1Bo+

A1'B1

4 bit magnitude comparator:

4

*hkkkhkhkkkhkhkkkhkhkkkihkkkiiikkik

Design a 4 bit magnitude comparators. (Apr — 2019)

Input

A = A_'.; ..42 AJ A.”

B = E]BEBlB”

Page 16

Function Equation

{A = B:] = X3X7X1X,

I::A - B:I = A}BL + .1'3.433& + I?IJA[BE + 1'31'31']:‘4[:,B|r|
(.4. == B:I = A:'E"., T Ij‘AiB] + .1113.4135 + I_}IQI]A"H[:.B{;

As

B
— D

Bs

A:X }
B *—}
P DfLD -
=)
2ol
__D (A=B)

Four-bit magnitude comparator

kkhkhkhkhhhkhkhkhhkhkhkikiiiihihhhii

Page 17

BCD Adder:

Design to perform BCD addition.(or) What is BCD adder? Design an adder to perform arithmetic
addition of two decimal bits in BCD. (May -08)(Apr 2017,2018)[Nov — 2019]
Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a

previous stage. Since each input digit does not exceed 9, the output sum cannot be greaterthan9+9 +1
=19, the 1 in the sumbeing an input carry.

Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and
produce a result that ranges from 0 through 19. These binary numbers are listed in Table and are labeled
by symbols K, Z8, Z4, Z2, and Z1. K is the carry, and the subscripts under the letter Z represent the
weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.

Nerivertin ~Ff B A Ao
Derivation of BCD Adder

Binary Sum BCD Sum Decimal
K Z, Z, I, I, C 5 5 5 5
0 0] 0 0 0] 0 0 0 0
0 0] 0 1 0] 0 0 1 1
0 0] 1 0 0] 0 1 0 2
0 0] 1 1 0] 0 1 1 3
0 0 1 0 0 0] 1 0 0 4
0 0 1 0 1 0] 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1] 0 1 1 13
0 1 1 1 0 1] 1 0 0 14
0 1 1 1 1 1] 1 0 1 15
1 0] 0 0 1] 1 1 0 16
1 0 0 0 1 1] 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19
Addend Augend
Carry K T e -« Carry

out n

Z, Z, 7, Z,

Output

carry

——th | |

4-bit binary adder

Page 18

*
L X4

7
L X4

R/
L X4

A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. The two
decimal digits, together with the input carry, are first added in the top four-bit adder to produce the
binary sum.
When the output carry is equal to 0, nothing is added to the binary sum. When it is equal to 1, binary
0110 is added to the binary sum through the bottom four-bit adder.
The condition for a correction and an output carry can be expressed by the Boolean function

C=K+ 27824+ Z822
The output carry generated from the bottom adder can be ignored, since it supplies information already
available at the output carry terminal.
A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from
one stage must be connected to the input carry of the next higher order stage.

*hkhkkkhkhkkkhkhkkkhkkhkkkhkhkkihkkhhkkhkikkhiikkik

Binary Multiplier:
Explain about binary Multiplier.

Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.
The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit. Each
such multiplication forms a partial product.

Successive partial products are shifted one position to the left. The final product is obtained from the
sum of the partial products.

B, B, A

A A
ApBy ApBy

B,
ABy AB, J LJ
G G C Cy Ay

|
?

A combinational circuit binary multiplier with more bits can be constructed ina similar fashion.

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits in
the multiplier.

The binary output in each level of AND gates is added with the partial product of the previous level to
forma new partial product. The last level produces the product.

HA

r‘:-‘—
S

Page 19

A 1

B B, B By
B B, B, By LJ
0
Addend Augend
4-bit adder
Sum and output carry
B B, B B,
A
Addend Augend
4-bit adder
Sum and output carry
T l J l l Y
Cq Cs Cy G G G G

B R R R R R R R R R R R S R R S S R S R R S R R S R R S e R S e e S

Page 20

CODE CONVERSION
Design a binary to gray converter.
Binary to Grayconverter

Gray code is unit distance code.
Input code: Binary [Bs B, Bi Byl
output code: Gray [Gs G, G1 Go]

(Nov-2009)(Nov 2017)

Truth Table
B3 B2 Bl BO G3 G2 G1 GO
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 b(1) b(2) b(3) b(4) b(5)
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0 1{1&1 %\ 1 BINARY
0 1 0 0 0 1 1 0 l l i l
0 1 0 1 0 1 1 1 l
0 1 1 0 0 1 0 1 1 0 0 1 1
0 |11 11 |1 J0 J1 10 10 £ €@ £ €@ £6) GREY
1 0 0 0 1 1 0 0 b(1) bl1) xorb(2) b(2) xorb(3) b(3)xorblg) blg)xorbis)
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0
K-MAP FORGS3: K-MAP FORG2:
~J1B0 o 01 11 10 ~J180 g 01 11 10

B382 6382

oo 0 0 0 0 ao 0 0 1] 0

01 0 0 0 0 01 1 1 1 1

| |
THEE 1 1 1 T o 0 0
0] | 1 1 1 10|] 1 1 1
G3=B3 G2=B3’B2+B3B2’=B3 #B2

Page 21

K-MAP FORGL1: K-MAP FORGO:

\B1E0 oo 01 11 10 B1B0 o 01 11 10
B3R B3E2

m| o 0 1 1 o | o 1 .]
0 [1 D 0 0| o i 0 1

|
!
11 1 D 0 ol 1 . 1
1wl o 0 1 1
0] o ! 0 il

G1=B1’B2+B1B2’=B1 B2 G0=B1’ B0+B1B0’=B1 #B0

Logic diagram:

Binary to Gray Converter

5 @ 'D @ co
LY

51 @ ®]B ®

52 @ D @ «

B3 @ ® «:

Gray to Binary converter:

Design a gray to binary converter.(OR) Design a combinational circuit that converts a four bit gray
code to a four bit binary number using exclusive — OR gates. (Nov-2009) [NOV - 2019]
Gray code is unit distance code.

Input code: Gray [G3 G, G1 Go]

output code: Binary [Bs B, B; Bg]

g(3) g(2) g(1) g(o)
1 o 1 0 GREY Le b3) =2(3)
LAY A b(2) - b(3) @2(3)
/‘1B /&a ‘ /EB ‘ b(1) = b(z) Dg1)
b(3) b'(-l) b(1) bio) b(o} = b(1) ® g(o)
1 1 (1] 0 EBINARY

Page 22

Truth Table:

Matural-binary code

]
]

RirrRrRrR R oloo o ololoo

K-Map:

51 Go
Gzl 00

H RO oo R RR=R=O 00O

For B3

RO O(RRR OO RO OO O

00| O

G1 Go
GG\ 00

Bi=Gs

For B1

)
[=]

H O RO/ OROROROKRORD

=
3%}

B2 Bl

[=-]
=

[H U I U I e e I = == =1 ===
olololgrkr rkrrre~ooloo
Rlrlaloaoorkrlalokr e rrloo
olrrlorookrrlooraolkr~ao

B:=G3i'G:+G3G:"
=Gs @Gz

For Bo

G1Go
GalGz

00

01

Page 23

7
L X4

7
L X4

From the above K-map,

Bi= Ga3

Ba= G2'Go+ GaGy'

Bx= G32G2

E;= G3‘G1‘G-_+ G;IG:I_G'_I+ G;GJG_'_+ GngGf
= 53 (G G+ G2G1) + Gs (G2G1+ GGy

= 53" (G226 + Gs (G2BG)’ [xBy = x'y+ xy'], [(xBy)’ = xy+ x'y']

Bi= G3% G2E G

Bo= G2'Gy' G1'Got Gi'G_GiGo'+ GalGrGr_Got GaGaGr Go'+ Ga'GolGr'Go' +

G3G2_G1'Go'+ G3'G2GiGot+ GaG2_G1Go.

= G3'Gy (GL'Go+ GiGy") + GaGz (GL'Get+ G1Go') + Gr'Gy’ (G3'Gat+ GalGy) +

GGG Gat GaGa').

= G3'Gr (GoEG1) + GG (GGl + Gi'Gy’ (GrEGs) +G1Go (G EGs).

= GG (GG + GaGa) + GBGs (Gr' Go +G1Ga)

= (GoBG1) (G2BGs)'+ (G2BGs) (GoBG1) [xSy = X'y+ x7']

Bo= (GoEGa) & (G2EG3).
Logic Diagram:

G3

B3

B2

El

BCD to Excess -3 converter:

Design a combinational circuits to convert binary coded decimal number into an excess-3 code.

Excess-3 code is modified form of BCD code.

(Nov-06,09,10, May-08,10)

Excess -3 code is derived from BCD code by adding 3to each coded number.

Page 24

Truth table:

Decimal BCD code Excess-3 code

= Bs B B Bo Es Ex E1 Eo
0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
5 1 0 0 0 1 1] 1 1
G 1 0 0 1 1 1 0 0

K-Map:
For Es3 For E»

Es= B:+ Bz (Bo +B4)
For E1

Ei=B:'Bo"+ B1By
=B1@Bn

E:=B:B1'B:"+ B:" fEl]"' E‘l]
For Eo

01 11

Page 25

Logic Diagram

BCD Code

B3 Bz B1 Bo

i

Eo=Bo’

by
D Ei1= Bo®B1
I/

\‘
./
] E2=B2B1'Bo’

+ B2' (Bo+ B1)

E3= Bi+ Bz (Bo+ B1)

Excess -3 to BCD converter:

Design a combinational circuit to convert Excess-3 to BCD code. (May 2007)
Truth table:
. Excess-3 code BCD code
Decimal 5 1TF, [B2 | B | B: | B | B: | Ba
3 0 0 1 1 0 0 0 0
4 0 1 0 0 0 0 0 1
5 0 1 0 1 0 0 1 0
] 0 1 1 0 0 0 1 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 0 1 0 1
g 1 0 0 1 0 1 1 0
10 1 0 1 0 0 1 1 1
11 1 0 1 1 1 0 0 0
12 1 1 0 0 1 0 0 1

Page 26

K-map simplification

For B, For B,
EiE; 00 01 11 10 EiE, 00 01 11 10

...........

oo xi| x| o [x oo x [{X| o [{X]

ot 1] 0| o1 ot]o |1 o1

ml 1 x| x| x 1nlo |ixi| x|ix

o) 1ifo| ol 1o [(1i] o [i1]

E'IE[I For EE E1ED For 53
EsE>~_ 00 01 11 10 EsEx~_ 00 01 11 10

oof x | x| o] x oo x | x | 0| x

orj o | o0 |1} o pijo |0 | 0|0

1| o | x| xi|/x] || x [Ix]] x]
w7 o | 1] o] o|o [i1)] o

T momoad

B, = E2E1 + BB Ep + E3E1EU B, = E5E; + EjE4E,

Page 27

Logic diagram

Excess -3 code

Page 28

Bo

BCD Code
B2

Ba

For B4

For B;
01

10

11

Page 29

Bs
EA

00
0
0
0

B;=DC'B’

B:=DCB'+D'B

EA

D

Binary Code
C

Design Binary to BCD converter.

Truth table:

Decimal

10
11

14

K-map:

For By
01

BA
DC\ 00

10

11

B.=D'C+CB

For B.

B:=DC+ DB

Logic diagram:
Binary Code
D C B A

SANIE, e

Bi=A

B.=DCB'+D'B

B.=D'C+CB

B;=DC'B’

B:=DC+DB

519

*hhhhkhkkkkhkhkhkhhhhkhkhkkkhkhihirhiikixikdk

Page 30

DECODERS AND ENCODERS
Decoder:
Explain about decoders with necessary diagrams. (Apr 2018)(Nov 2018)

% A decoder is a combinational circuit that converts binary information from n input lines to a maximum
of 2" unique output lines. If the n -bit coded information has unused combinations, the decoder may
have fewer than 2" outputs.

< The purpose ofa decoder is to generate the 2" (or fewer) minterms of n input variables, shown below for
two input variables.

2 to 4 decoder:

B
' E A B D, D, Dy Dy
D
1 X X 11 1 1
4 0o 0 0 0 1 1 1
T [>O 0 0 1 1] 1 1
} I, 0 1 0 1 1 0o 1
B — } o 0 | 1 1 1 1 1
==
E— >0
(a) Logic diagram (b) Truth table
3 to 8 Decoder:
Design 3 to 8 line decoder with necessary diagram. May -10)
Truth table:
Inputs Outputs
X '_F I Du D] ﬂz D3 D,q_ Ds Dﬁ DT
0 0 (0 1 0 0 0 0 0 (0 0
0 0 1] 1 0 0 0 0 0 0
] | 0] 0 1 0] 0 0 0
] 1 1] 0 0 1] 0 0 0
1 0 (0] 0 0 0 1 0 (0 0
1 0 |] 0 0 0 0 | 0 0
1 | 0] 0 0 0] 0 1 0
1 1 1] 0 0 0 0 0 0 1

Page 31

Logic diagram:

Design for 3 to 8 decoder with 2 to 4 decoder:

*,

to eight decoder as follows.

URURURURURE T .

2—to—4
Decodar
] Dy
Pllu Bl 1 .
A, 21 2 0D,
3 EY
A, ’_Dk - |Enable
2-to—4
Decader
0 D.
2'3 1 DS
S P 2 Dg
3 —D?
Enable

=
|
"
#a

Dy =x'y'z

Dy =x'yz'

Dy =x'yz

;)_1 = .\.’_\":r

Dy =xy'z

Dg = xyz’

D; = xyz

% Not that the two to four decoder design shown earlier, with its enable inputs can be used to build a three

Page 32

Implementation of Boolean function using decoder:

% Since the three to eight decoder provides all the minterms of three variables, the realisation of a
function in terms of the sum of products can be achieved using a decoder and OR gates as follows.

Example: Implement full adder using decoder.

Sum is given by Y m(1, 2, 4, 7) while Carry is given by Ym(3, 5, 6, 7) as given by the minterms
each of the OR gates are connected to.

Solution :

Step 1 : Truth table

Inputs Outputs
3108
Decoder A B Ci, Carry Sum
o 0 0 0 0 0
1
7 a0) 0 0 1 0 1
4] 1 1] 8] 1
¥ ol 3 Q 1 | 1 0
4
L, 1 0 0 0 1
X ad ; 1 0 I 1 0
7 1 1 0 1 0
1 1 1 1 1

Design for 4 to 16 decoder using 3 to 8 decoder: Design 5 to 32 decoder using 3 to 8 and 2 to 4 decoder:

i ~ 3-to-8 .
5 & 0 == o7
D8
T 3-to-8 —

; 3x8 | . T.'— DEC B -
t_ decoder Dato Ds I3 2404 ‘_E [D15
: E Moo pec l -

] Pl 308 B= i

" > @ DEC = 3

s N D24
IxB -to-8 /=
decoder — DstoDys] DEC e
E E D31
5-t0-32 line decoder
*hkhkkhkkhkkhkkkkkkkkkkhkhkhkhkhkikkkkkkhkkkkkikkikikikik
BCD to seven segment decoder
Design a BCD to seven segment code converter. (May-06,10, Nov- 09)
a
([
0 123456189
-
{a} Segment designation (b) Murmeric designation for display

Page 33

7-Segment code

For !h!

BCD code

For (a)

Digit

Truth table:
K-Map:

<1
+
C
i
+
= £
- :
e
[y =
+ E &
- [ot
E&l o + =
- = |n =
+ £
= R
as = 1l
Il 0 =
[<= O = — — o
] o =] = ™ ™
£
=
s
+
cg A 2
F g © s
+ - =
c™ B T
b &
ﬂ = I S|~} o | % ||~
" "0 = =)
i (] o o — — (=
= =1 — ™
m jun]
I =4

Page 34

A+ C'D'+ BC'+ BD

f

BTY+ CTY

3]

o= A+ BC'+ B'C+ CD

Logic Diagram:

A

vIv[v|y

B C D

”

r

=

-]

0|00 0000

= =]

i

% The specification above requires that the output be zeroes (none of the segments are lighted up) when
the input is not a BCD digit.

% In practical implementations, this may defer to allow representation of hexadecimal digits using the
seven segments.

*hkkhkhkkhkhkhhkhkhkkhkkhkhhihhhkhkkkkhiikx

Page 35

Encoder:
Explain about encoders. (Nov 2018)
< Anencoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2" (or
fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary code
corresponding to the input value.

*,

Octal to Binary Encoder:

%+ The encoder can be implemented with OR gates whose inputs are determined directly from the truth
table. Output z is equal to 1 when the input octal digitis 1, 3, 5, or 7.

% Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can
be expressed by the following Boolean output functions:

z=Dy+ Dy+ Ds + D
y =Dy + D3+ Dg + Dy
X=Dy+ Ds+ Dg+ Dy
The encoder can be implemented with three OR gates.

Truth table:
Inputs Outputs
D{. ﬂ] DI D; D4 D5 ﬂﬁ D? X ¥ Iz
I (0 () 0 (0 J) 0 (0 0 (0
] | () () 0]] (0 (0 () |

—
fom}

((
. [((
) 0 1 0 0 { 0 0 0 1 0
{ 0 0 0 1 l
{ { 0
(
(

!
1 ' 0

[s

o]

[w—y
o]

=
e

= e e L
-

(
0) 1

% Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is generated when all the
inputs are 0; but this output is the same as when DO is equal to 1. The discrepancy can be resolved by
providing one more output to indicate whether at least one input is equal to 1.

Page 36

Logic Diagram:

DO D1 D2 D3 D4 D5 D6 DY

*hkkkkhkhkkkhkhkkkhkhkkikkikkhkkikkiiikkik

Priority Encoder:

O a0 D000 OO0
™ =]

Design a priority encoder with logic diagram.(or) Explain the logic diagram of a 4 — input priority
encoder. (Apr —2019)

A priority encoder is an encoder circuit that includes the priority function. The operationof the
priority encoder is such that if two or more inputs are equal to 1 at the same time,the input having the
highest priority will take precedence.

Truth table:

Modified Truth table:

Inputs Outputs
Du D] .Dz Dg X ¥ v
0 0 0] X X 0
1 0 1] 0] g 1
X 1 1] 0] 1 1
X X 1] 1 g 1
X X X 1 1 1 1

Inputs

¥

| D2

g

(=T R R

-
IS e E=]1

Sl el el = IR = R =0 o el T Y Wi) S (e
HlIEF O QOO QRO Q= =oS

e e e e e e O oo oD oo o

Page 37

Logic diagram:

D,

W=D+ D+ Do+ Ds
Logic Equations:
x=D0Dy+ Dy
y=D;+ Dy D3
V=D,+ D+ D, + D,

V= D+ DhDe:

D

f.-||

o

Dy

>

T
L

i._.l'

kkhkhkkhhhhkhkhkhkkkhkhrirrrhkhkhhkhkhiirrhhhhhhhiiiiiiixx

Page 38

MULTIPLEXERS AND DEMULTIPLEXERS

Multiplexer: (MUX)
Design a 2:1 and 4:1 multiplexer.

*

s A multiplexer is a combinational circuit that selects binary information from one of many input lines and
directs it to a single output line. The selection of a particular input line is controlled by a set of selection
lines.

< Normally, there are 2" input lines and n selection lines whose bit combinations determine which input is

selected.

2101 MUX:
A 2to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input ofan

AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1 mux
is given in the table below.

B
—>

select

R

%+ To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure. And
once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y is

equal to 1",
Truth table:
s Y
In
1 L

Logic Diagram:

)7
))

Page 39

4101 MUX:

s A4to 1 line multiplexer is shown in figure below, each of 4 input lines 10 to I3 is applied to one input

ofan AND gate.
%+ Selection lines SO and S1 are decoded to select a particular AND gate.

%+ The truth table for the 4:1 mux is given in the table below.

;u"_\

Inpuls

| Io—p|0 L/
I, —»1

L
I —»3

v
5

-
. t@g

Truth Table:
SELECT OUTPUT
INPUT f

S1 SO Y 5, —

0 0 10 5

0 1 11

1 0 12

1 1 13
Problems :
Example: Implement the Boolean expression using MUX

F(A,B,C,D) = Ym(0,1,5,6,8,10,12,15) (Apr 2017, Nov 2017)

Solution : Implementation table :

Do | D, | D, Dy D, D D] Dy
HIOIOIEAEIERIG] (O] R
a|®]| ¢ |GO] 11 || 13| 14 |G

1 a a 0 a a a a

a
| i
1— Dg
D,
D5
0— D5 8:1 vi—
D, MUX
Ds
Dg
D7
525,15y
B CD

Page 40

Example: Implement the boolean function using Multiplexer. [NOV -2019]
F(x,y,2)=Xm(l,?2,6,7)

Solution:
Implementation table:

(=)

Multiplexer Implementation:

4:1
NMUX

51 5

Example: 32:1 Multiplexer using 8:1 Mux (Nov 2018) (Apr — 2019)

L 1
=== — 1k
[==a]
ced o, 8ol
L ——————— L Ml
|
pes 000 1.
el — 1y
=3m150
- — | |
54
50
[=F5 =
=5 -
o1
=
o Bla=
(=40 :;' ME’: [~] w
o = "
ik r w Boel
5254 50 2. Mux
PSS]
I "
o
53 5450
—
S 4|
e " 53
= =
(=45] T
L 1w B-lo-1 o
=] e
ot L L LTE
sl " L
oa n
53 5158
8] I |
G "
= "
(=3 (13
o w Btod
B3 3 Mux
= [F
o "
GO "
Ei51 50
—— 1]

Page 41

DEMULTIPLEXERS:
Explain about demultiplexers.

¢+ The de-multiplexer performs the inverse function ofa multiplexer, that is it receives information on one

line and transmits its onto one of 2n possible output lines.
% The selection is by n input select lines. Example: 1-to-4 De-multiplexer

Truth table
o 51 S0 F F1 F2 F3
—-g 0 0 D 0 0 0
———— Bl
et
1 input signal —w DEMUX : =
: ‘% 1 1 0 0 0 D
IR,
]
i :
D F,
'n'- Control F,
sianals F,
S1SO
Logic Diagram: Truth Table:
E
INPUT OUTPUT
>3,.. D[!
D E|D|[so| st | YyYo | VYL | Y2]| v3
Sp --——}m 110 o 1 0 0 0
>c "'--'}D 11110 1 0 1 0 0
5, £
1111 0 0 0 1 0
=
1111 1 0 0 0 1

Page 42

1.

2.

Example:
Implement full adder using De-multiplexer.

Solution :

Step 1 : Truth table

Inputs Outputs
A B Cin Carry Sum
0 0 1] 0]
0 0 1 0 1
0 1 0 0 1
0 1 1 1]
1 0] 0 1
1] 1 1]
1 1 0 1]
1 1 1 1 1

Step 2 : For full adder
Carry = C_, :E m (3,5,6,7)
and Sum = §= z m (1,2,4,7)

Step 3 : When D, =1, the demultiplexer gives minterms at the output.

YD—
i
2
1:8 '3 —
0o =1—| : Y
I DEMUX Y4
5 C
] >
v k
SpS152
ABC

Implement the following functions using de-multiplexer.
f1 (A,B,C) = 2m(1,5,7), £2 (A,B,C) = > m(3,6,7)
Solution:

ABC

kkhkhkhhhkhkhkkkhkhkhkhkiiiikhkhhhkhihiikix

Parity Checker/ Generator:

» A parity bit is an extra bit included with a binary message to make the number of 1’s either odd or
even. The message, including the parity bit, is transmitted and then checked at the receiving end for
errors. Anerror is detected if the checked parity does not correspond with the one transmitted.

» The circuit that generates the parity bit in the transmitter is called a parity generator. The circuit that
checks the parity in the receiver is called a parity checker.

» In even parity system, the parity bit is ‘0’ if there are even number of 1s in the data and the parity bit
is ‘1’ if there are odd number of Is in the data.

» Inodd parity system, the parity bit is ‘1’ if there are even number of 1s in the data and the parity bit is
‘0’ if there are odd number of 1s in the data.

3-bit Even Parity generator:

Truth Table:

Three-Bit Message Parity Bit
X ¥ z P
] 0 Q0 0
0 0 1 1
0 1 0 1
] 1 1]
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

P=xdbydz

Logic Diagram:

Page 44

e

AS

7/
X4

L)

4-bit Even parity checker:

Truth Table:
Four Bits Parity Error
Received Check
X ¥ z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 | 1 1
1 0 0 0 1
1 0 0 1 0
1] 1]]
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 | 0 1
1 1 | 1 0

C=xdydza&P
Logic Diagram:

—I>— >
>

&

ID

INTRODUCTION TO HDL

In electronics, a hardware description language or HDL is any language from a class of computer
languages and/or programming languages for formal description of digital logic and electronic circuits.
HDLs are used to write executable specifications of some piece of hardware.
A simulation program, designed to implement the underlying semantics of the language statements,
coupled with simulating the progress of time, provides the hardware designer with the ability to model a
piece of hardware before it is created physically.
Logic synthesis is the process of deriving a list of components and their interconnection (called net list)
from the model of a digital system.
Logic Simulation is the representation of the structure and behavior of a digital logic synthesis through
the use ofa computer.
The standard HDLs that supported by IEEE.

v" VHDL (very High Speed Integrated Circuit HDL)

v" VerilogHDL

Page 45

HDL MODELS OF COMBINATIONAL CIRCUITS

The Verilog HDL model of a combinational circuit can be described in any one of the following
modeling styles,

v'Gate level modeling-using instantiations of predefined and user defined primitive gates.
v'Dataflow modeling using continuous assignment with the keyword assign.
v'Behavioral modeling using procedural assignment statements with the keyword always.

Gate level modeling

In this type, a circuit is specified by its logic gates and their interconnections. Gate level modeling
provides a textual description of a schematic diagram. The verilog HDL includes 12basic gates as
predefined primitives. They are and, nand, or, nor, xor, xnor, not &buf.

HDL

/I Gate-level description of two-to-four-line decoder
/I Refer to Fig. 4.19 with symbol E replaced by enable, for clarity.

module decoder 2x4 gates (D, A, B, enable),

output [0: 3) D;
input A, B:
input enable;
wire A_not, B_not, enable_not;
not
G1 (A _not, A),
G2 (B_not, B),
G3 (enable_not, enable),
nand

G4 (D[0], A_not, B_not, enable_not),

G5 (D[1], A_not, B, enable_not),

G6 (D[2]. A, B_not, enable_not).

G7 (DJ[3], A, B, enable_not);
endmodule

Data flow modeling

Data flow modeling of combinational logic uses a number of operators that act on operands to produce
desired results. Verilog HDL provides about 30 different operators. Data flow modeling uses continuous
assignments and the keyword assign. A continuous assignment is a statement that assigns a value to a
net. The data type family net is used to represent a physical connection between circuit elements.

HDL for2-to-4 line decoder

Page 46

Some Verilog HDL Operators

Symbol Operation

+ binary addition
- binary subtraction
& bitwise AND
I bitwise OR
bitwise XOR
~ bitwise NOT
== equality
> greater than
< less than
{) concatenation
(- conditional

Behavioral modeling

module decoder_2x4_df (

output [0: 3] D,
input A, B,
enable
)
assign D[0] = ~(~A & ~B & ~enable),
D[1] = ~(~A & B & ~enable),
D[2] = ~(A & ~B & ~enable),
D[3] = ~(A & B & ~enable);
endmodule

% Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used mostly to

describe sequential circuits, but can also

be used to describe combinational circuits.

% Behavioral descriptions use the keyword always, followed by an optional event control expressionand a

list of procedural assignment statements.

// Behavioral description of two-to-one-line multiplexer

module mux_2x1_beh (m_out, A, B, select);
output m_out,
input A, B, select;
reg m_out.
always @(A or B or select)

if (select == 1) m_out = A,
else m_out = B,
endmodule

Page 47

UNIT I
SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits - Storage Elements: Latches, Flip-Flops - Analysis of Clocked Sequential Circuits - State
Reduction and Assignment - Design Procedure - Registers and Counters - HDL Models of Sequential

Circuits

SEQUENTIAL CIRCUITS
Sequential circuits:

> Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of
the inputs and the state of the storage elements.

> Because the state of the storage elements is a function of previous inputs, the outputs of a sequential
circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior

must be specified by a time sequence of inputs and internal states.

Inpuis ——— o = Chutputs
Combinational
circuit
= » Memory
elements

Types of sequential circuits:
There are two main types of sequential circuits, and their classification is a function ofthe timing
of their signals.
1. Synchronous sequential circuit:
It is a system whose behaviorcan be defined from the knowledge of its signals at discrete
instants of time.
2. Asynchronous sequential circuits:
The behaviorof an asynchronous sequential circuit depends upon the input signals at any
instant of timeand the order in which the inputs change. The storage elements commonly used

in asynchronoussequential circuits are time-delay devices.

LATCHES AND FLIP FLOPS

Flip-Flop:

» The storage elements (memory) used in clocked sequential circuits are called flipflops. A flip-flop is
a binary storage device capable of storing one bit of information. Ina stable state, the output of a flip-
flop is either 0 or 1.

> Asequential circuit may use many flip-flops to store as many bits as necessary. The block diagram of
a synchronous clocked sequential circuit is shown in Fig.

Page 1

> A storage element in a digital circuit can maintain a binary state indefinitely (as long as power is
delivered to the circuit), until directed by an input signal to switch states.

» The major differences among various types of storage elements are in the number of inputs they
possess and in the manner in which the inputs affect the binary state.

Latch:

» The storage elements that operate with signal levels (rather than signal transitions) are referred to as
latches; those controlled by a clock transition are flip-flops.Latches are said to be level sensitive

devices; flip-flops are edge-sensitive devices.

Inputs —— - Outputs
Combinational
circuit

Flip-flops

— S LTI

{b) Timing diagram of clock pulses

(a) Block diagram

Synchronous clocked sequential circuit

SR Latch: Using NOR gate

Realize SR Latch using NOR and NAND gates and explain its operation.
» The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, and
two inputs labeled S for setand R for reset.

» The SR latch constructed with two cross-coupled NOR gates is shown in Fig.

0 Q

5 R
R (reset) |
1 0|1 0
001 0 (after§=1,R=10)

01|10 1
0 0|0 1 (afterS=0,R=1)

5 (set) 1 1|0 0 (forbidden)

(a) Logic diagram (b) Function table
SR latch with NOR gates

» The latch has two useful states. When output Q =1 and Q’= 0, the latch is said to be in the set state .
When Q =0and Q’ =1, it is in the reset state . Outputs Q and Q’ are normally the complement of
each other.

» However, when both inputs are equal to 1 at the same time, a condition in which both outputs are
equal to O (rather than be mutually complementary) occurs.

» If both inputs are then switched to O simultaneously, the device will enter an unpredictable or
undefined state or a metastable state. Consequently, in practical applications, setting both inputs to 1
is forbidden.

Page 2

FLIP FLOPS
Triggering of Flip Flops:
Explain about triggering of flip flops in detail.

» The state of a latch or flip-flop is switched by a change in the control input. This momentary change

is called a trigger, and the transition it causes is said to trigger the flip-flop.

(a) Response to positive level

. I

(b) Positive-edge response

1 3

1

(c) Negative-edge response

Level Triggering:
» SR, D, JK and T latches are having enable input.

> Latches are controlled by enable signal, and they are level triggered, either positive level triggered or

negative level triggered as shown in figure (a).

> The output is free to change according to the input values, when active level is maintained at the

enable input.

Edge Triggering:

» A clock pulse goes through two transitions: from0 to 1 and the return from 1 to 0.

» As shown in above Fig (b) and (c)., the positive transition is defined as the positive edge and the

negative transition as the negative edge.

khkkhhrhkhkkhkhkhkhirrrhhhhhkhiiiiiiixdx

Explain the operation of flipflops.(Nov 2017)

FLIP FLOP CONVERSIONS

The purpose is to convert a given type A FF to a desired type B FF using some conversion logic.

Page 3

! Conversion T}’P‘? A FF E
R Logic (given) :

Type B FF ({desired)

The key here is to use the excitation table, which shows the necessary triggering signal (S,R, J,K, D and

Qe = Qi

T) for a desired flipflop state transition :

Excitation table for all flip flops:
Q Qi S R |D J K |T
0 0 0 X 0 0 X 0
0 L 1 0 | 1 X |
L 0 0 | 0 X | |
L 1 X 0 1 X 0 0

1. SR Flip Flop to JK Flip Flop

The truth tables for the flip flop conversionare given below. The present state is represented by

Qp and Qp+1 is the next state to be obtained when the Jand K inputs are applied.

For two inputs J and K, there will be eight possible combinations. For each combination of J, K and Qp,
the corresponding Qp+1 states are found. Qp+1 simply suggests the future values to be obtained by the
JK flip flop after the value of Qp.

The table is then completed by writing the values of S and R required to get each Qp+1 from the
corresponding Qp. That is, the values of S and R that are required to change the state of the flip flop from
Qp to Qp+1 are written.

Page 4

http://www.circuitstoday.com/flip-flop-conversion

5-R Flip Flop to 1-K Flip Flop] ac 01 11 10
u] 1 3 2
Conversian Table Logic Diagram 0 0 X 0 a
4 5 7 i
J-K lnputs. Outputs S-R lnputs T —
1 1 X 0 1
R O] 1 [
0 0 0 0 0 X s anfr— -
5= 1dp
il ol 1 1 X il 1
KQp
0 1 0 0 0 % J oo 01 11 10
—cC
o] 1 1 o] vl 1 1] 1 3 2
il X 0 1 X
10 0 1 1 0 K
1o 1 1 % a R w3 4 5 7 g
1 a 0 1 0
1 1] 1 1]
1 1 1 1} 0 1
H = Kn

2.JK Flip Flop to SR Flip Flop
This will be the reverse process of the above explained conversion. S and R will be the external

inputs to J and K. As shown in the logic diagram below, J and K will be the outputs of the combinational
circuit. Thus, the values of J and K have to be obtained in terms of S, R and Qp. The logic diagram is

shown below.

A conversion table is to be written using S, R, Qp, Qp+1, J and K. For two inputs, S and R, eight
combinations are made. For each combination, the corresponding Qp+1 outputs are found. The outputs
for the combinations of S=1 and R=1 are not permitted for an SR flip flop. Thus the outputs are

considered invalid and the J and K values are taken as “don’t cares”.

J-K Flip Flop to 5-R Flip Flop

Conwversion lable Logic iagram
S-R lnputs | Outputs J-K Inputs
5 R OpGp+l | 1 K 5 J Qp
0o a a 0 a X
(Y 11 X0 —C
0 1] 0 a X _
H K Qp
0 1 1 fl X 1
1 0 a 1 1 ot R R
A Foan 01 11 10 A F oo 01 11 10
1 0 1 1 ¥ 0] 1 3 2] 1 3 2
0 a ® x 0 a X a 1 et
i Dont care
1 1 [nwvalid i = > =) = 5 T
1 1 x x x 1 . a X X
1 1 [nvalid Dont care
1=5 K-mmags K=R

Page 5

3.SR Flip Flop to D Flip Flop

As shown in the figure, S and R are the actual inputs of the flip flop and D is the external input of

the flip flop. The four combinations, the logic diagram, conversion table, and the K-map for S and R in

terms of D and Qp are shown below.

S-R Flip Flop to & Flip Flop

Conversion Table K-maps
| D Input | Outputs | S-R Inputs D & 0 1 qu o i
= ?}n Qp;l ; ; 0 DI:I nl |H__uj|l
0 10 0 1 | 0’ o
1 o 1 10 S=D R=D
1 1 1l X D

4.D Flip Flop to SR Flip Flop

Logic Diagram

D 5 Qpl—
—c
S ol—

D is the actual input of the flip flop and S and R are the external inputs. Eight possible

combinations are achieved from the external inputs S, R and Qp. But, since the combination of S=1 and

R=1 are invalid, the values of Qp+1 and D are considered as “don’t cares”. The logic diagram showing

the conversion from D to SR, and the K-map for D in terms of S, R and Qp are shown below.

Conversion Table

S-R Inputs| Outputs O Input |

5 R _|Op Op+l

o 0 o0 0 L]

o a 1 1 1

¢ 1 0 0 0

o 1 1 0)

1 0 0 1 1

1 0 i 1 1

1 1 Inwvalid Dant care
1 1 Irivalid Dant care

D Flip Flop to 5-R Flip Flop

K-map
ERq“m o1 11 10
1] 1 E] 2
ol o TL 0 0
4 T]
1| 1 1| % ¥ |

Logic Diagram

Page 6

http://www.circuitstoday.com/flip-flop-conversion

5.JK Flip Flop to T Flip Flop

Jand K are the actual inputs of the flip flop and T is taken as the external input for conversion.
Four combinations are produced with T and Qp. J and K are expressed in terms of T and Qp. The
conversion table, K-maps, and the logic diagram are given below.

J-K Flip Flap ta T Flip Flop

Conversion Table K-maps Lagic Diagram
Tﬂu - Tﬂzn a1 T 3
TInput Dutputs | J-K Inputs i) 1] 1] [
Ty | ol o° x ol x| o
1] a o 0 X -~
1 i 1] [x 1
0 1 1 0 =
1=T K=T K Qpp—
1 LY 1 1 X
1 1 1] x 1

6.JK Flip Flop to D Flip Flop

D is the external input and J and K are the actual inputs of the flip flop. D and Qp make four
combinations. J and K are expressed in terms of D and Qp. The four combination conversion table, the

K-maps for J and K in terms of D and Qp, and the logic diagram showing the conversion from JK to
D are given below.

J=K Flip Flop to D Flip Flop

Conversion Table K-maps Lesgie DHagram
DQP o 4 DQP- o : e
0 Trput Cutputs J-K Inputs 7] 1 _al] Qr —
G aper | 1 K ol o | x ol | 1
] i} 0 [1] X 2 K] _—
1] [| x| 1] % o
w] 1 lu] = 1 — —
=D K=0D K Qp p——o
1 o 1 1
1 1 Q X 0D

7.D Flip Flop to JK Flip Flop

AUQ: How will you convert a D flip-flop into JK flip-flop? (AUQ: Dec 2009,11,Apr 2017)

In this conversion, D is the actual input to the flip flop and J and K are the external inputs. J, K
and Qp make eight possible combinations, as shown in the conversion table below. D is expressed in
terms of J, K and Qp.The conversion table, the K-map for D in terms of J, K and Qp and the logic
diagram showing the conversion from D to JK are given in the figure below.

Page 7

http://www.circuitstoday.com/flip-flop-conversion
http://www.circuitstoday.com/flip-flop-conversion
http://www.circuitstoday.com/flip-flop-conversion

D Flip Flop to J-K Flip Flop

Conversion Table K-map Lagic Diagram
KQp
3 Input | Qutputs | O Input No00 01 11 10

1K B Qe+l] 1 E F]] o Qp
0 0 D o 0 o |T| 0 0

nElilliE= A
0 0 1 1 1 K =

nE 1 o v o
0 1 o o 0 = T

0 =JQp + KQp

g 1 1 4] o]
1 0 0 1 1
1 0 11 1
11 o 1 1
11 1 0 0

*hhkkhhkhkhkhhkhkhhkhkhhkhihhkhhhkkhhhkkhhhkkhkhhkhkihhkihhkihiiikx

MEALY AND MOORE MODELS

Write short notes on Mealy and Moore models in sequential circuits.
» In synchronous sequential circuit the outputs depend upon the order in which its input variables
change and can be affected at discrete instances of time.
General Models:
» There are two models in sequential circuits. They are:
1. Mealy model

2. Moore model

Moore machine:

> In the Moore model, the outputs are a function of present state only.

_P)))
Inputs Next Excitation State Outout
State [Memory Cun Loéic s
LDgiC (FJ“IF) | urrent E OllTpUtS
Sthte
CLOCK

Mealy machine:

> In the Mealy model, the outputs are a function of present state and external inputs.

Page 8

I?pll?’ Next Excitation | State — Output
State [Memory | _ : >
Logic ®m) (ol LS| Outpus
CLOCK
Difference between Moore model and Mealy model.
Sl.No Moore model Mealy model
1 Its output is a function of present Its output is a function of present state
state only. as well as present input.
2 Input changes does not affect the Input changes may affect the output of
output. the circuit.
3 It requires more number of states It requires less number of states for
for implementing same function. implementing same function.

Example:

A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one output (y).

The Flip-Flop input functions are:

Da= Ax+ Bx

De= A’xand

the circuit output function is, Y= (A+ B) x°.

(a) Draw the logic diagram of the circuit, (b) Tabulate the state table, (c) Draw the state diagram.

Solution:
A
* x Da Qs A
* (®)
5 . _
Qa A

CLE

Page 9

State table:

Present state | Input Flip-Flop Inputs Next state Output

Da= - . . _ -
Ax+Bx De= A"x | A(t+l) B{t+1) | Y= (A+B)x

0 0 0 0

i
w
o

H R Roooo
== D D= = O O
H O R OO =S
= oOROoOROoo
o0 o Olr o
= oOR o/~ oo
oRrOoORoR oo

Next state Output

Present state
x=10 x=1 x=0 =1

= =1
= o = ol
oo oo e
oo o o W
=1 -
[T s T
== o

[=F ===

Second form of state table

State diagram:
0/0

*hhkhErkhkrkrAhkhkrhkhkihhkhkihhkkihkkhkihkkhkihkhkihkhkkihhkiihikiik

*hhkhkAhkhkhkAhkhkhkkhhkhikhkhhhkhkhhkhkihkhkhhkhkihkhihhiiiiiikx

COUNTERS
Counter:
» A counter is a register (group of Flip-Flop) capable of counting the number of clock pulse
arriving at its clock input.
» A counter that follows the binary number sequence is called a binary counter.
» Counter are classified into two types,
1. Asynchronous (Ripple) counters.

2. Synchronous counters.

Page 10

>

>

>

In ripple counter, a flip- flop output transition serves as clock to next flip-flop.
o Withan asynchronous circuit, all the bits in the count do not all change at the same time.
Ina synchronous counter, all flip-flops receive common clock.
o With a synchronous circuit, all the bits in the count change synchronously with the
assertion of the clock

A counter may count up or count down or count up and down depending on the input control.

Uses of Counters:

The most typical uses of counters are

v

<

To count the number of times that a certain event takes place; the occurrence of event to be
counted is represented by the input signal to the counter

To control a fixed sequence of actions in a digital system

To generate timing signals

To generate clocks of different frequencies

Modulo 16 ripple /Asynchronous Up Counter

Explain the operation of a 4-bit binary ripple counter.

>

YV V VY V

YV Vv

The output of up-counter is incremented by one for each clock transition.
A 4-bit asynchronous up-counter consists of 4JK Flip-Flops.
The external clock signal is connected to the clock input of the first FlipFlop.
The clock inputs of the remaining Flip-Flops are triggered by the Q output of the previous stage.
We know that in JK Flip-Flop, if J=1 , K=1 and clock is triggered the past output will be
complemented.
Initially, the register is cleared, QpQcQsQa =0000.
During the first clock pulse, Flip-Flop A triggers, therefore Qa=1, Q=Qc=Qp=0.
QpQcQeQA=0001
At the second clock pulse FLipFlop A triggers, therefore Qa changes from 1 to 0, which triggers
FlipFlop B, therefore Qg=1,0a=Qc=Qp=0
QpQcQeQA=0010
At the third clock pulse FlipFlop A triggers, therefore Qa changes from 0 to 1, This never triggers
FlipFlop B because 0 to 1 transition gives a positive edge triggering,but here the FlipFlops are
triggered only at negative edge(1 to O transition) therefore Q A=Qg=1, Qc=Qp=0.
QoQcQeQA=0011

Page 11

> At the fourth clock pulse Flip-Flop A triggers, therefore Qa changes from 1 to 0, This triggers
FlipFlop B therefore Qg changes from 1 to 0. The change in Qg from 1 to 0 triggers C Flip-Flop,
» Therefore Q¢ changes from0 to 1. Therefore Qa=Qs=Qp=0, Qc=1.

QpQcQeQA=0100

Truth table:

Page 12

{ CLK Qutputs
1Qp | Qc | Qs | Qa

| o|jlo|lo}]oO

' 1 ool o] 1
2 0 0] 110
3 oo |1 |1
4 jo‘ﬁ];n;u
5 { 0 1 ' 0 1
6 { O 1 | 1 “ 0
7 o[1] 1]
8 1o [0 O
9 FTto (o611
10 |[1]0 11 0 |
i1 | 1|01 [1]|
2 L1110)0]

i 13 ‘ 1"“'1"‘5'”(')”'*;"1

Timing diagram:

CLK |
Qu 0| r]ojr]o]]ofn 010lolﬂ.l~0
(] 1] 1 1] 1] 1] 1] 1 L
1] T 1 T 1 T 1 I
QO:OI:I 0 ;0 1 ;1 0,0 1 11|03} 0 I:Ilo
Bt | : : : : : :
: : . Y : . + i : : . —
QO!OIGtﬂ 1 1 1 1 .00 0 lrlnl-l‘_ﬂ
C 1]]]]]]]]]] :
S D T A TR O S S SR S SO S S
Qp 2i10 .0 0,0 ;0;¢ . 0 1:1:1:1:1:1:1:ILD
. 1 1 L i) ' 1 ' ' ' ' ! ' '
\ T] 0] ¥]) ' i ' ' ' ' oo
’ 1 1 ' PO 1 ' ' [l ' 1 ' ' L

Fig“re 4.37 Timing diagram of 4-bit asynchronous up-counter.

khkkhkhkhkhkhhhkhkhkkkhkhhkhhhhkhhkhkhhkhiirhhhkixixk

Modulo 16 /4 bit Ripple Down counter/ Asynchronous Down counter
Explain about Modulo 16 /4 bit Ripple Down counter.
> The output of down-counter is decremented by one for each clock transition.
» A 4-bit asynchronous down-counter consists of 4JK Flip-Flops.
» The external clock signal is connected to the clock input of the first Flip-Flop.
> The clock inputs of the remaining Flip-Flops are triggered by the Q output of the previous stage.

Page 13

» We know that in JK Flip-Flop, if J=1 , K=1 and clock is triggered the past output will be

complemented.

Kp

J

(MSB
Qo)

Qp}

Qo

Outputs
4_,/\.._
~
(LSB)
A Qs
High
Ia Qa Ja Qs le Qe
Cli}fm—c> A o> £>
Ka Qa Kg Qe K¢ Qe
Figure. Logic diagram of 4-bit asynchronous down-counter

> Initially, the register is cleared, QpQcQsQa =0000.

> During the first clock pulse, Flip-Flop A triggers, therefore Qa changes from0 to 1 also Qa
changes from 1 to 0. This triggers Flip-Flop B, therefore Qg changes from 0 to 1, also Qg changes
from 1 to Owhich triggers Flip-FlopC. Hence Qc changes from0to 1 and Q¢ changes from 1 to

0, which further triggers, Flip-Flop D.

QpQcQeQa=1111

QoQc Qs Qa=0000

» During the second clock pulse Flip-Flop A triggers, therefore Qa changes from1 to 0 aIsoEA
changes from 0 to 1 which never triggers B Flip-Flop. Therefore C and D Flip-Flop are not

triggered.

QDQCQBQA :1110

» The same procedure repeats until the counter decrements upto 0000.

Page 14

Outputs
Qc

Qa

-Qg

Qo

CLK

o

10

11

12
13
14
15
16

.. .- Truth table for 4-bit asynchronous down-counter

Table

- L B BT I R R b = . Lo
= T- L R
[—] . -
S WIS PR BRI BU Qo
\n Q.
lul =] - =) o fm; -
= - b idaliaialadb it il ol N ..
(o8] = B s Satid
~ 1 "1t -""~~"===""1"-" cwl
l - . - AN M ome S AR A AR kel ew 0
= = o~ — o m
- 0 el e G ey am wmp e e WP W WY R B G S WP N W ' N
S T TS =
P) = 3 v ncau
T T W o e wr am - - et
»
P — = o y— =
- e p— - - b
_||-_7) —t) — cm _
_ Tt
- - T of)
=)] ot - m
[N PRI DUR AU M. -
— = — vt mb
[IS FET » po
) — e A T.mh
|||||||||||||||||| "
Y i — yowul
- - _l-l -1

o FLFLPLALF

*hkhkkkhkhkkkhkhkkkhkhkkkhhkkkihkkkikhkhkiiikik

Page 15

Asynchronous Up/Down Counter:
Explain about Asynchronous Up/Down counter.
» The up-down counter has the capability of counting upwards as well as downwards. It is also

called multimode counter.

» In asynchronous up-counter, each flip-flop is triggered by the normal output Q of the preceding
flip-flop.

> In asynchronous down counter, each flip-flop is triggered by the complement output Q of the
preceding flip-flop.

> Inboth the counters, the first flip-flop is triggered by the clock output.

Logic 1 l Qa(LSB) Qs

Qc(MsB)

G

K B Q B G4 KC QC
Up/Down
Figure 3-bit asynchronous up/down-counter

> If Up/Down =1, the 3-bit asynchronous up/down counter will perform up-counting. It will count
from 000 to 111. If Up/Down =1 gates G, and G, are disabled and gates G; and Gs are enabled.
So that the circuit behaves as an up-counter circuit.

> If Up/Down =0, the 3-bit asynchronous up/down counter will perform down-counting. It will
count from 111 to 000. If Up/Down =0 gates G, and G, are enabled and gates G; and Gs are

disabled. So that the circuit behaves as an down-counter circuit.

PG
01010
0
i}

0

1
-1
P

Up/Down = 1

Table . Truth table for 3-Bit asynchronous Up/Down-counter

*hkkkhkhkkkhkhkkkhkhkkkhkhkkhkkhkkhkkikkhkikkhkikkiik

Page 16

4- bitSynchronous up-counter:
Explain about 4-bit Synchronous up-counter.

Outputs
,/,_7 k\
(LSB)
Q Qs Qc oD
High
6.}
%) c
Ja Qa Is Qs Ic Qc Io Qp
ﬁc> A 4> B ,> C <:> D
Ka Qa Kg Qs K¢ Qc Kp Qo
CLK

Figure Logic diagram of 4-bit Synchronous up-counter

> In JK Flip-Flop, If J=0, K=0 and clock is triggered, the output never changes. If J=1 and K=1 and
the clock is triggered, the past outpit will be complemented.
Initially the register is cleared QpQcQsQa= 0000.
During the first clock pulse, Ja= Ka =1, Qa becomes 1, Qg Q¢ Qp remains 0.
QoQcQsQAa= 0001.
During second clock pulse, Ja= Ka =1, Qa=0.
Js=Kg =1, Qg =1, Q¢, Qp remains 0.
QpQcQeQA= 0010.
During third clock pulse, Ja= Ka =1, Qa=1.
Js=Kg =0, Qs =1, Qc, Qp remains 0.
QpQcQeQa=0011.
During fourth clock pulse, Ja= Ka =1, Qa=0.
JB=Kg=1,Qs=0
Jo=Kc =1, Qc=1
Qp remains 0
QpQcQeQa= 0100.

The same procedure repeats until the counter counts up to 1111.

Page 17

Truth table for 4-bit synchronous up-counter

_ Table

- - - -
- -
-

mp =t - -—-

- e -

PR R B IR

L s L T .

o <o < -
- — —]
[—] — — (=}
-y - yo— [—]
P ERRn T R
— <o Y- [—]
- —— - e
— — = [
- P B Dbl EEEE
—] <
R e e IO I
il Dl R P
- . .
S

Timing diagram of 4-bit synchronous up-counter

kkhkhkkhhhhkhkhkhkkkhkhhirrikhkhkhhkhkhirrrhhhhhhhiiiiiiixx

Page 18

4- bit Synchronous down-counter:

Explain about 4-Bit Synchronous down counter.

Outputs

Q (LSB)
A by
High Qs Qe (MSH)
D
R
Ia Qa ;
Qc o Qo
g A
> 3 o
Ka Qu Qc Ko G
CLK
G

Fisure 3 Logic diagram of 4-bit synchronous down-counter

In JK Flip-Flop, If J=0, K=0 and clock is triggered, the output never changes. If J=1 and K=1 and the
clock is triggered, the past outpit will be complemented.
Initially the register is cleared QpQcQsQa= 0000

QpQcQeQa= 1111

During the first clock pulse, Ja= Ka =1, Qa=1
Jb=Kg=1,0Qs=1
Je=Kc=1,Qc=1
Jb=Kp=1,Qp=1
QpQcQeQa= 1111
QoQcQeQ4= 0000

During the second clock pulse, Ja=Ka =1, Qa =0
Jg=Kg=0,Qs=1
Jc=Kc=0,Qc=1
Jb=Kp=0,Qp=1
QoQcQeQa=1110
QpQcQeQa= 0001

Page 19

1,Qa=1

JB: KB = l, QB =0
JC: Kc = 0, QC =1
JD: KD = 0, QD =1

QpQcQeQa= 1101

The process repeats until the counter down-counts up to 0000.

During the second clock pulse, Ja= Ka

Outputs
0

0

0

Q
0

CLK

Olo_wllun.ulu,u.”
]0011070'
~~l~lelalalo]
Clojlojololo|la
2iRlYi2lg e

Truth table of 4-bit synchronous down-counter

Table

*hhkkkhkhkkkhkhkkkhkhkkkhkhkkhkhkkhkhkkhkikkhkikkhihkkiiikkik

Page 20

Modulo 8 Synchronous Up/Down Counter:

Explain about Modulo 8 Synchronous Up/Down Counter.

Qutputs
A
-~ o
58) (MSB)
QA QB QC
Logic 1
In Q. F@" Is Qe Ye Qe
PE || Dok IRaC
Ka 6,.—@ Ka [+ Kc Q
Up/Down rl; , |
CLK
Figure 3-bit synchronous up/down-counter

In synchronous up-counter the Qa output is given to Jg, Kgand Qa. Qg is given to Jc, Kc. But in

synchronous down —counter Qaoutput is given toJg, Kg and Qa. Qg is givento Je, Ke.

A control input Up/Down is used to select the mode of operation.

If Up/Down =1, the 3-bit asynchronous up/down counter will perform up-counting. It will count from
000 to 111. If Up/Down =1 gates G, and G4 are disabled and gates G; and Gz are enabled. So that the

circuit behaves as an up-counter circuit.

If Up/Down =0, the 3-bit asynchronous up/down counter will perform down-counting. It will count from
111 to 000. If Up/Down =0 gates G, and G4 are enabled and gates G and Gs are disabled. So that the

circuit behaves as an down-counter circuit.

Up/Down = 1

Table ' Truth table for 3-Bit asynchronous Up/Down-counter

*hhkhEAhkAAhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhhhhihiiiiiikx

Page 21

DESIGN OF RIPPLE COUNTERS
3-Bit Asynchronous Binary Counter/ modulo -7 ripple counter:
Design a 3-bit binary counter using T-flip flops. [NOV - 2019]
Explain about 3-Bit Asynchronous binary counter. (Nov -2009)
The following is a three-bit asynchronous binary counter and its timingdiagram for one cycle. It
works exactly the same way as a two-bitasynchronous binary counter mentioned above, except it has
eight statesdue to the third flip-flop.

Clock Pulse) (), th

Initially t [} ti

| i 0 |

2 U | {

3 U | |

3 | §] {]

A | §] |

iy | | 1l

7 | | |

Nofrecvelos) | il 8] 1}

PG -— -
1B 1171 IR EN
/ i) ! '] I

. :
! . o
CLnSBY 0 " ST | L »
- | | .

il

Asynchronous counters are commonly referred to as ripple counters forthe following reason: The
effect of the input clock pulse is first “felt” byFFO. This effect cannot get to FF1 immediately because of
thepropagation delay through FFO. Then there is the propagation delaythrough FF1 before FF2 can be

Page 22

triggered. Thus, the effect of an inputclock pulse “ripples” through the counter, taking some time, due
topropagation delays, to reach the last flip-flop.

*hkhkkkhhkkkhhkkkhkhkkhkhkkhhkkhkhkkhkhkkhkikkhihkkiik

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT
Design and analyze of clocked sequential circuit with an example.

The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of

inputs, outputs and internal states.

X
D |
[3

Cik

—e— A
| D B—
J

Cik

o— B
Clock

j > \ v
B |

Fig: Example of sequential circuit

Consider the sequential circuit is shown in figure. It consists of two D flip-flops A and B, an input x and

anoutput y.

A state equation specifies the next state as function of the present state and inputs.
A(n+1)=A(n)x(n)+B(n)x(n)

B(n +1)= A(n)x(n)
They can be written in simplified form as,

A(n+1) =Ax+Bx
B(n +1) = Ax

Page 23

The present state value of the output can be expressed algebraically as,

y(n=(A+B)x

DESIGN OF SYNCHRONOUS COUNTERS

Design and analyze of clocked sequential circuit with an example.

The procedure for designing synchronous sequential circuit is given below,

o ok~ 0w N F

From the given specification, Draw the state diagram.

Plot the state table.

Reduce the number of states if possible.

Assign binary values to the states and plot the transition table by choosing the type of Flip-Flop.
Derive the Flip flop input equations and output equations by using K-map.

Draw the logic diagram.

State Diagram:

» State diagram is the graphical representation of the information available in a state table.

> Instate diagram, a state is represented by a circle and the transitions between states are indicated by

directed lines connecting the circles.
State Table:

>

>

A state table gives the time sequence of inputs, outputs ad flip flops states. The table consists of
four sections labeled present state, next state, input and output.

The present state section shows the states of flip flops A and B at any given time ‘n’. The input
section gives a value of x for each possible present state.

The next state section shows the states of flip flops one clock cycle later, at time n+1.

The state table for the circuit is shown. This is derived using state equations.

Page 24

Present
State
A B
0 0
0 0
0 1
0 1
1 0
1 0

1
]

1
1

Input

X

L =]

L =]

0
]

Next

State
A B
0 0
0 1
0 0
1 1
0 0
I 0
0 0
I 0

Output

= - D D

) =

1
0

The above state table can also be expressed in different forms as follows.

Present
State

A B
0 0
0 1
] 0
] |

Next State
x=0 x=1
A B A B
o 0o 0 1
o o 1 1
o o 1 0
o o 1 0

Output
x=0 «x-=
4 1 4
0 0
1 0
1 0
1 0

1

The state diagram for the logic circuit in below figure.

Flip-Flop Input Equations:

00

@)

0/1

/1

071

10

O

The part of the circuit that generates the inputs to flip flops is described algebraically by a set of Boolean

functions called flip flop input equations.

Page 25

The flip flop input equations for the circuit is given by,

Dp =Ax +BXx
Dg =AX

B R e e R e R s e R e R R S R R R e R R e R e

k,hkkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhhhkkhkhhkkhkhhkkhihkkhihhkikihkiiikk

Design of a Synchronous Decade Counter Using JK Flip- Flop (Apr 2018, Nov 2018)
A synchronous decade counter will count from zero to nine and repeat thesequence.
State diagram:

The state diagram of this counter is shown in Fig.

o™
\.

v
@

/ef*@\.

Excitation table:

Present State Next State Output
Q| D 1 Q[Qo| Qs | Qo [Q[Q | T3 [Ka| o [Ky |y | K [| Ky
010100 0O 0 10| 1]0]X]0|X]|]O0|X]|1]|X
01010 1] 0O 01100 X]0|X |]|X]X]I
01010 0O 0 1|1]0]X]0|X|X]0]1]X
O|10 1| 1] 0 I 1000 X |1 [X|X]1T]X]1
011100 0O I 1O 110X | X]0|0]X|1]X
01110 1] 0 1 1100 X | X0]| X |X]|1
O 110 0 1 110X | X0 |X|0]1|X
011 1]1 1 0 10101 X|X| 1 [|X]1]X]1
110100 1 0 10| 1 | X]0]0|X]0]X]|1]|X
L1001]| 0O 0100 |X]|1]0|X]0]X|X]I

K-Map:

Page 26

3% 00 01 11 10 2 00 01 1 10
Q:,Qz Q:]QZ
00| 1 X X 1 00| x 1 1 X
01 1 X X 1 01 X 1 1 X
11 X X X X 11 X X X X
10 1 X X X 10 X 1 X X
Jo=1 Kg=1
w0 1 10 o o 1 10
QQ, QQ,
00 1 X X 00 X X 1
01 1 X X 01 X X 1
11 X X X X 1 X X X X
10 X X 10 X X X X
h=0;q, Kq=Q;Q,
Q/Qy QQy
00 01 11 10 00 01 1 10
QQ, QQ,
00 1 00 X X X X
01| X X X X 01 1
11 X X X X 11 X X X X
10 X X 10 X X
J,=Q;Q, K, =Q;Q,
i o1 11 10 2 1 1 10
00 00
QQ, QQ,
00 00 X X X X
01 1 01 X X X X
11 X X X X 11 X X X X
0| X X X X 10 1 X X

d =Q;0,+ Q;Q,Q,

K; = Q,+ Q;Q;Q,

Page 27

Logic Diagram:

L
II1I —L
~\
% 1 1\; I Q 1% Q —J, .
nn Flip-Flop Flip-Flop Flip-Flop Flip-Flop
5 CLK P CLK CLK B CLK
Y L% (3 &
— Ky Ky Kz LKy —‘

Fhhkhhkhkhhkhkhkhkhkhkhhkhkkhhkhkihhkihkhkihhkihhiiikiik

Design of an Asynchronous Decade Counter Using JK Flip- Flop.

An asynchronous decade counter will count from zero to nine and repeat thesequence. Since the
JK inputs are fed from the output of previous flip- flop,therefore, the design will not be as complicated as
the synchronous version.

At the ninth count, the counter is reset to begin counting at zero. The NAND gateis used to reset
the counter at the ninth count. At the ninth count the outputs offlip-flop Q3 and Q1 will be high
simultaneously. This will cause the output ofNAND to go to logic “0” that would reset the flip-flip. The

logic design of thecounter is shown in Fig.

Page 28

-
do Q@ T4 Q! 112 Q@ 1T J
oo | || Lo | [z |]] e
Qo 8 Q2 Qs
1 c%.)R 1 C%R -1 C(IfR —" C?R

khkkkhkkhkhhhhkhkhkhkkhkhhkhhhhhhkhkhkhkhihiihhhhkhhiix

Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop(Nov 2017)
The modulus six counters will count 0, 2, 3, 6, 5, and 1 and repeat the sequence. This modulus six
counter requires three SR flip-flops for the design.

@ O~

State diagram:

’

()« @D

Truth table:

[Present State | Next State Output

Q | Q1| Qo] Q [Q1]Q [R S | R[S [R| S
0 OfojoOoJ1]O]O[X] 1]O0]O0[X
0 1 0] 0 |1 | 0 [X[X|]O0]|]T1]0O0
0 1| 1] 1 1] 0 10| X | 0|0]1
1 ljoj 1o 1 |X]O0]O0|1|1]0
1 O [1]0]0]1 0| 1]0 [X|X]O
0 O[1]0 0|00 [X]O0|X]|]O0]1

K-Map:

Page 29

Q@

00 01 11 10 3% 01
Q, Q, 00 1" 10
0| o 0 0 | 1 | ol x |1 1| 0
1| X X X | 1 | 1] x 0 X 0
RU= Q1°ao 30=62'Q0
N 00 o1 11 10 3 01 11 10
Q, Q, 00
0 l 1| o X X o| 0 | x 0 0
1 | X | 0 X 0 1 [X X X 1]
R1 = 61'60 S, =Q,
N 11 10 Q% 01
Q, Q, 00 11 10
ol o 0 | 1 | 0 Ol x [x)| © X
1 X 0 ‘ X I X 1 | X 1 J X 0
R2= Q1‘Qo 82 =E|
Logic Diagram:
L
_‘)730 Qo —S1 M S, Q
Flip-Flop Flip-Flop Flip-Flop
J-I'I-I'n—o—w(;LK —> CLK —> CLK
Qg Q4 Q2
T) Ro 11) Ry T) Ry
|/ i/ - J
&

SHIFT REGISTERS
Explain various types of shift registers. (or) Explain the operation of a 4-bit bidirectional shift register.

(Or) What are registers? Construct a 4 bit register using D-flip flops and explain the operations on the

register.(or) With diagram explain how two binary numbers are added serially using shift registers.
(Apr—2019)[NOV - 2019]

» A register is simply a group of Flip-Flops that can be used to store a binary number.

» There must be one Flip-Flop for each bit in the binary number.

» For instance, a register used to store an 8-bit binary number must have 8 Flip-Flops.

Page 30

» The Flip-Flops must be connected such that the binary number can be entered (shifted) into the

register and possibly shifted out.

» A group of Flip-Flops connected to provide either or both of these functions is called a shift register.

» Aregister capable of shifting the binary information held in each cell to its neighboring cell in a

selected direction is called a shift register.

» There are four types of shift registers namely:

1. Serial In Serial Out Shift Register,

2. Serial In Parallel Out Shift Register
3. Parallel In Serial Out Shift Register
4. Parallel In Parallel Out Shift Register

1.Serialln Serial Out Shift Register

» The block diagram of a serial out shift register is as below.

Serial
data
input

Fig. Block Diagram cfété e

n
flip
flops

I 1. Serial-in Serial-out I

' Sérial
data -

- output

1(a) Left to Right
1(b) Right to Left

Data in =y

—_

-

» Data out

Data out <=

-

-

= Data in

> Asseen, it accepts data serially .i.e., one bit at a time ona single input line. It produces the stored

information on its single output also in serial form.

» Data may be shifted left using shift left register or shifted right using shift right register.

Shift Right Register

The circuit diagram using D flip-fops is shown in figure

Page 31

Serial Qp Serial

data *]Dx Q4 D De Qe Dp Qo © data -

input output
A B c D

CLK

Fig. Serial in serlal out right shift register

Serial Data

IR Q, Jdg Qp Jo Q.
> A |—<=> B |—0> c
| Ka__ Q) l LY L G

.-

Fig. . : 8180 8hift Register using JK Flip-fiop
As shown in above figure,the clock pulse is applied to all the flip-flops simultaneously.

The output of each flip-flop is connected to D input of the flip-flop at its right.
Each clock pulse shifts the contents of the register one bit position to the right.

New data is entered into stage A whereas the data presented in stage D are shifted out.

YV V. V V VY

For example, consider that all stages are reset and a steady logical 1 is applied to the serial input
line.

Y

When the first clock pulse is applied, flip-flop A is set and all other flip-flops are reset.

When the second clock pulse is applied,the ‘1’ on the data input is shifted into flip-flop A and ‘1’
that was in flip flop A is shifted to flip-flop B.

» This continues till all flip-flop sets.

Y

» The data ineach stage after each clock pulse is shown in table below

" Shift Pulse| Serial bata Input| Q, Q. Q. Serial Output Qp
_-70 : ——— 0 0 0 0

1 1 ! 0 0 0 _

, 1 R 0

3 1 i { 1 0 ‘

4 1 SRS W 1

Shift Left Register
The figure below shows the shift left register using D flip-flops.

Page 32

. o 1 QD -D_D
Serial , N P
output’

» The clock is applied to all the flip-flops simultaneously. The output of each flip-flop is connected
to D input of the flip-flop at its left.

» Each clock pulse shifts the contents of the register one bit position to the left.

» Let us illustrate the entry of the 4-bit binary number 1111 into the register beginning with the
right most bit.

» When the first clock pulse is applied, flip flop A is set and all other flip-flops are reset.

» When second clock pulse is applied, ’1’ on the data input is shifted into flip-flop A and ‘1’ that
was in flip flop A is shiftedtoflip-flop B. This continues fill all flip-flop are set.

» The data ineach stage after each clock pulse is shown in table below.

._-{'_?rr Q, Q. Q, _"_Surinl Input Euck
B Data Pulse
0 0 0 0 1 0
0 0 0 | ! |
[0 0 : | ! 2
0 ! ! ! | 3
1 I | ! 1 4
L
2. Serial in Parallel out shift register: Datain=p > = >
A 4 bit serial in parallel out shift register is shown in figure. u\,'—‘
Data out

Page 33

Serial I |
- D, Qo
;::»E:St 0. Q4 Dg Qs Dc Qe o °
l
CLK

Qp, Qg Qe Qp

Fig. 3.42: Serial in parallel out shift register

» It consists of one serial input and outputs are taken fromall the flip-flops simultaneously.

» The output of each flip-flop is connected to D input of the flip-flop at its right. Each clock pulse
shifts the contents of the register one bit position to the right.

» For example, consider that all stages are reset and a steady logical ‘1’ is applied to the serial
input line.

» When the first clock pulse is applied flip flop A is set and all other flip-flops are reset.

» When the second pulse is applied the ‘1’ on the data input is shifted into flip flop A and ‘1’ that
was in flip flop A is shifted into flip-flop B. This continues till all flip-flops are set. The data in

each stage after each clock pulse is shown in table below.

Shift | Serial Data ___ Parallel Outputs
Pulse Input Q. 1 Q1 Q.| QD
0 1 0 o | o | o |
o] Lo o e
2 1 o f o o
3] R IR R Wi
4 R Sl 1 1

3. Parallel In Serial Out Shift register:
» For register with parallel data inputs, register the bits are entered simultaneously into their

respective stages on parallel lines.
» A four bit parallel in serial out shift register is shown in figure. Let A,B,C and D be the four
parallel data input lines and SHIFT/LOAD is a control input that allows the four bits of data to be

entered in parallel or shift the serially.

Page 34

Data in

'e ~
]]] [

=p = m=p =P Data out

| Serial
data

out

» When SHIFTS/LOAD is low, gates G1 through G3 are enabled, allowing the data at parallel

inputs to the D input of its respective flip-flop. When the clock pulse is applied the flip-flops with

D=1 will set and those with D=0 will reset, thereby storing all four bits simultaneously.

» When SHIFT/LOAD:Is high. AND gates G1 through G3 are disabled and gates G4 through G6are
enabled, allowing the data bits to shifts right from one stage to next. The OR gates allow either
the normal shifting operation or the parallel data entry operation, depending on which AND gates

are enabled by the level on the SHIFT/LOAD input.

Parallel In Parallel OutShift Register:
> In parallel in parallel out shift register, data inputs can be shifted either in or out of the register in

parallel.
» A four bit parallel in parallel out shift register is shown in figure.Let A, B, C, D be the four

parallel data input lines and Qa,Qs,Qc and Qp be four parallel data output lines. The
SHIFT/LOAD is the control input that allows the four bits data to enter in parallel or shift the

Data in

serially.

-«)
o
-«
-« =

|

Data out

Page 35

OSHIFTAGAD - - el B

» When SHIFT/LOAD is low, gates G1 through G3 are enabled, allowing the data at parallel inputs

to the D input of its respective flip-flop. When the clock pulse is applied, the flip-flops with D =1

willset those with D=0 will reset thereby storing all four bits simultaneously. These are

immediately available at the outputs Qa,Qs,Qc and Qp.

» When SHIFT/LOAD is high, gates G1, through G3 are disabled and gates G4 through G6 are
enabled allowing the data bits to shift right from one stage to another. The OR gates allow either

the normal shifting operation or the parallel data entry operation, depending on which AND gates

are enabled by the level onthe SHIFT/LOAD input.

k,hkkkhkkkkhkhkkkhkhkhkkikhkhkkhkhkkikhkkhhkkhkikkhkikkhihkkhiikik

Universal Shift Register:
Explain about universal shift register.(Apr -2018)

» A register that can shift data to right and left and also has parallel load capabilities is called

universal shift register.
» It has the following capabilities.
1. Aclear controlto clear the register to 0.

2. Aclock input to synchronize the operations.

Page 36

A shift right control to enable the shift right operation and the associated serial input

A shift left control to enable the shift left operation and the associated serial input and

A control state that leaves the information in the register unchanged in the presence of

Ry

al

(!
-
fr M fr
v v
41 4.1
AN AN
21 00 201
. .
Surlal
it for

shitlt-1e 1

3.
and output lines.
4.
output lines.
5. Avparallel load control to enable a parallel transfer and the n input lines.
6. nparalleloutput lines.
7.
the clock.
Iarallel outpuls
K -
i i
t:-lrl v |I' =i e I's
L L i
£y i £ i)
CLR
L B o4 i
. MUX |oMUN
IS A 200 .
el
ingaut Lo
shili-gight
/ i

B

Tarilel inpuats

» The diagram of 4-bit universal shift register that has all that capabilities listed above is shown in

figure. It consists of four D flip-flop and four multiplexers. Allthe multiplexers have two common

selection inputs S; and Sp. Input O is selected when S;Sp=00, input 1 is selected when S1S,=01

and similarly for other two inputs.

Page 37

» The selection inputs control the mode of operation of the register. When S1S0=00, the present
value of the register is applied to the D inputs of the flip-flop. The next clock pulse transfers into
each flip-flop the binary value it held previously, and no change of state occurs.

» When S;Sp=01,terminal 1 of the multiplexer inputs has a path to be the D inputs of the flip-flops.
This causes a shift right operation, with the serial input transferred into flip-flop As.

» When S;S0=10, a shift left operation results with the other serial input going into flip-flop Ao.
Finally, when S; Sp = 11, the binary information on the parallel input lines is transferred into the

register simultaneously during the next clock edge. The function table is shown below.

Mode Control

5 S0 Register Operation
0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

B R R R R R R o o R R R AR R R R R R R R S S S

SHIFT REGISTER COUNTERS:
Explain about Johnson and Ring counter. (Nov 2018)
Most common shift register counters are Johnson counter and ring counter.
Johnson counter:
» A 4 bit Johnson counter using D flip-flop is shown in figure. It is also called shift counter or

twisted counter.

Clk

FiQ ::::Ji:hnm.cmm . |
» The output of each flip-flop is connected to D input of the next stage. The inverted output of last
flip- flop Qpis connected to the D input of the first flip-flop A.

> Initially, assume that the counter is reset to 0. i.e., Qa Qg Qc Qp =0000. The value at Dg =

Dc=Dp=0, whereas Da =1 since Qp.

Page 38

» When the first clock pulse is applied, the first flip-flop A is set and the other flip-flops are reset.

.e., Qa Qg Qc Qp =1000.

» When the second clock pulse is applies, the counter is Qa Qs Qc Qp = 1100. This continues and
the counter will fill up with 1’s from left to right and then it will fill up with 0’s again.

» The sequence of states is shown in the table. As observed from the table, a 4-bit shift counter has

8 states. In general, an n-flip-flop Johnson counter will result in 2n states.

Clock Pulse| Q, Q, Q. Q, Q,
0 0 0 0 0 1
1 1 0 0 0 1
2 1 1 0 0 1
3 1 1 1. 0 1
4 1 1 I 1 0
5 0 1 1 1 0
6 0 0 1 1 0
7 0 0 0 1 0
o [0 0o o o 1

The timing diagram of Johnson counter is as follows:

Eaiaigininiaiainl

o,

Q- ' I o

Fig.. " Timing Disgram of Johason Counter

R - T S

Ring Counter:

A 4- bit ring counter using D Flip-Flop is shown in figure.

Page 39

Preset —_1_

Fig. :Ring Counter by R

» As shown in figure, the true output of flip-flop D. i.e., Qp is connected back to serial input of flip-
flop A.

> Initially, 1 preset into the first flip-flop and the rest of the flip-flops are cleared ie.,
QaQsQcQp=1000.

» When the first clock pulse is applied, the second flip-flop is set to 1while the other three flip flops
are reset to 0.

» When the second clock pulse is applied, the ‘1 in the second flip-flop is shifted to the third flip-
flop and so on.

» The truth table which describes the operation of the ring counter is shown below.

Clock Pulse Q, Q, Q, Q,
0.] 0 0 o
1 10 1 0 0
2 0 0 1 0°

3 0 o 0 1

> As seen a 4-bit ring counter has 4 states. In general, an n-bit ring counter has n states. Since a

single ‘1’ in the register is made to circulate around the register, it is called a ring counter. The

timing diagram of the ring counter is shown in figure.

Page 40

B

kkhkhkhhrhkhkhkhkhkhkhirrrhkhkhhhkhhirrriiihhii

HDL FOR SEQUENTIAL CIRCUITS
Write coding in HDL for various flip-flops.

Page 41

D th Flaps '
: -moduie DFF (¢, d, clock clock reset)
| input ciock, reset d
~outputg;

reg ¢;: | |
= ‘aIWz;ys @ (posedge clock, negedge reset) .
. 1f(~ reset)
o g l’bO
8 s
| 'q'- < d,
: end'. |
- endmodule
T Fl:p-Fiop

: module TFF (q t, clock, reset),
- mput c]ock reset, :
- 'output q, -
T f’ '
) always @ (posedge clock negedge reset)
g .‘ :b&gini. | |
lf (~ reset) (// same as 1f (reset—*()))

Page 42

if (~ reset)

g < 1'bo;
else
; .;begin
| case ({j, k})
2b00: g < g
2°b01: g < 0;
2’b10:q < 1;
2’bll: q ‘<: ~q;
~end case
~end
T end‘-... '
B -end module'

T ﬂlp ﬂop from D ﬂlp flop and gates

" “module T_FF (Q T, CLK, RST);

SR _outpth, .

" inputT, CLK,RST’

© wire DT | . | B
 assignDT=Q"T /1T flip flop characteristic equation is Q¢+ 1)=Q & T
~ DFFTFI(Q, DT, CLK, RST) //InstantlateDﬂip flop. o o

‘}_endmodule ‘
fllp i‘lop from D ﬂnp flop and gates |
module K FF (Q J, K CLK RST),

wn‘eJK I : S .
o T {:(J&NQ) | (~K &Q), 1 JK ﬂlp ﬂop charactenstic equatxon IS Q(r+1) JQ+KQ

Page 43

Page 44

Page 45

Page 46

Test Bench:

odule DFE_test bench;

wire 1

eg telock; treset, 1d;

S =0

. telock=0;
: t:resef = 0,
i 3 treset = L

DFF di (telock, treset, td, #q); -

 /instantiate D-flip flop module

_ /instantiate synchronous counter module

Page 47

Write the VHD L Code for 4-Bit Binary Up Counter and explain. (Apr 2019)
VHDL Code for 4-Bit Binary Up Counter

The clock inputs of all the flip-flops are connected together and are triggered by the input pulses. Thus,
all the flip-flops change state simultaneously (in parallel).

. Q Q Q Q
mput —CD T —7 7 71

pulses
CLR CLR CLR CLR

o l l l

1

inpu LI_

(]
>
=N
o
N
~
o

9 10

libraryieee;

use ieee.std logic_1164.all;
useieee.std_logic_unsigned.all;
entityvhdl_binary _counter is

port(C, CLR :in std_logic;

Q :out std_logic_vector(3 downto 0));
endvhdl_b